Skip to main content
Log in

Deterministic Seismic Hazard Analysis for the Northwestern Part of Haryana State, India, Considering Various Seismicity Levels

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study quantifies seismic hazard using a deterministic framework for the northwestern part of India, where a new nuclear power plant (NPP) is going to be built in the near future. The region of interest is situated about 200 km from the Himalayan thrust, home of many great earthquakes including the 1897 Shillong, 1905 Kangra, 1934 Bihar–Nepal, 1950 Arunachal Pradesh, and 2011 Sikkim events. This region has also witnessed six intraplate earthquakes of magnitude greater than 6 in the past two centuries. Therefore, considering the past seismicity and importance of the facility, seismic investigation is performed in the seismic control region over a radius of 300 km from the boundary of the NPP to identify active faults and lineaments. Then the seismotectonic map is prepared by compiling the earthquake data of magnitude ≥ 3 and dividing the source region into regions I and II to represent the interplate and intraplate seismicity. Eight well-recognized attenuation models are considered to estimate the ground motion characteristics at the bedrock level. The captured earthquake hazard for three earthquake scenarios reveals different seismicity levels of sources from low to high using the logic tree approach. The developed hazard maps show spatial variation of 50th and 84th percentile peak ground acceleration (PGA) for three scenarios. The maximum PGA for the three respective scenarios is obtained as 0.088 g, 0.110 g, and 0.151 g. The corresponding deterministic response spectra are also presented for all cases, and the present hazard values are found to be higher than those quoted by previous researchers. The results obtained in this article will be very useful for preparing hazard index maps of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AERB (Atomic Energy Regulatory Board). (1990). Seismic studies and design basis ground motion for nuclear power plant sites. Standard AERB/SG/S-11, AERB, India.

  • Akkar, S., & Bommer, J. J. (2010). Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East. Seismological Research Letters, 81(2), 195–206.

    Article  Google Scholar 

  • Akkar, S., Sandıkkaya, M. A., & Bommer, J. J. (2014). Empirical ground-motion models for point-and extended-source crustal earthquake scenarios in Europe and the Middle East. Bulletin of earthquake engineering, 12(1), 359–387.

    Article  Google Scholar 

  • Ambraseys, N., & Bilham, R. (2000). A note on the Kangra Ms = 7.8 earthquake of 4 April 1905. Current Science, 79(1), 45–50.

    Google Scholar 

  • Anbazhagan, P., Bajaj, K., Dutta, N., Moustafa, S. S., & Al-Arifi, N. S. (2017). Region-specific deterministic and probabilistic seismic hazard analysis of Kanpur city. Journal of Earth System Science, 126(1), 12.

    Article  Google Scholar 

  • Anbazhagan, P., Bajaj, K., & Patel, S. (2015). Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters. Natural Hazards, 78(2), 1163–1195.

    Article  Google Scholar 

  • Anbazhagan, P., Smitha, C. V., Kumar, A., & Chandran, D. (2013). Estimation of design basis earthquake using region-specific Mmax, for the NPP site at Kalpakkam, Tamil Nadu, India. Nuclear Engineering and Design, 259, 41–64.

    Article  Google Scholar 

  • Atkinson, G. M., & Boore, D. M. (2006). Earthquake ground-motion prediction equations for eastern North America. Bulletin of the Seismological Society of America, 96(6), 2181–2205.

    Article  Google Scholar 

  • Bilham, R., & Gaur, V. K. (2011). Historical and future seismicity near Jaitapur, India. Current Science, 101(10), 1275–1281.

    Google Scholar 

  • Bommer, J. J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., & Abrahamson, N. A. (2005). On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bulletin of the Seismological Society of America, 95(2), 377–389.

    Article  Google Scholar 

  • Bonilla, M. G., Mark, R. K., & Lienkaemper, J. J. (1984). Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement. Bulletin of the Seismological Society of America, 74(6), 2379–2411.

    Google Scholar 

  • Boominathan, A., Dodagoudar, G. R., Suganthi, A., & Maheswari, R. U. (2008). Seismic hazard assessment of Chennai city considering local site effects. Journal of Earth System Science, 117(2), 853–863.

    Article  Google Scholar 

  • Campbell, K. W. (2003). Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America. Bulletin of the Seismological Society of America, 93(3), 1012–1033.

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24(1), 139–171.

    Article  Google Scholar 

  • Chandra, U. (1977). Earthquakes of peninsular India—A seismotectonic study. Bulletin of the Seismological Society of America, 67(5), 1387–1413.

    Google Scholar 

  • Costa, G., Panza, G. F., Suhadolc, P., & Vaccari, F. (1993). Zoning of the Italian territory in terms of expected peak ground acceleration derived from complete synthetic seismograms. Journal of Applied Geophysics, 30(1–2), 149–160.

    Article  Google Scholar 

  • Desai, S. S., & Choudhury, D. (2014). Deterministic seismic hazard analysis for greater Mumbai, India. In Geo-congress 2014: Geotechnical special publication no. GSP 234 (pp. 389–398). ASCE.

  • Desai, S. S., & Choudhury, D. (2015). Site-specific seismic ground response study for nuclear power plants and ports in Mumbai. Natural Hazards Review, 16(4), 04015002.

    Article  Google Scholar 

  • ESRI. (2011). ArcGIS Desktop: Release 10. Redlands: Environmental Systems Research Institute (ESRI).

  • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.

    Article  Google Scholar 

  • GSI. (2000). Seismotectonic Atlas of India and its environs. Geological Survey of India, Special Publication 59, Kolkata.

  • IS 1893-Part 1. (2016). Criteria for earthquake resistant design of structures. New Delhi: Bureau of Indian Standards.

    Google Scholar 

  • Iyengar, R. N., Sharma, D., & Siddiqui, J. M. (1999). Earthquake history of India in medieval times. Indian Journal of History of Science, 34(3), 181–238.

    Google Scholar 

  • Jain, S. K. (2016). Earthquake safety in India: achievements, challenges and opportunities. Bulletin of Earthquake Engineering, 14(5), 1337–1436.

    Article  Google Scholar 

  • James, N., Sitharam, T. G., Padmanabhan, G., & Pillai, C. S. (2014). Seismic microzonation of a nuclear power plant site with detailed geotechnical, geophysical and site effect studies. Natural Hazards, 71(1), 419–462.

    Article  Google Scholar 

  • Kanno, T., Narita, A., Morikawa, N., Fujiwara, H., & Fukushima, Y. (2006). A new attenuation relation for strong ground motion in Japan based on recorded data. Bulletin of the Seismological Society of America, 96(3), 879–897.

    Article  Google Scholar 

  • Kayal, J. R. (2008). Microearthquake seismology and seismotectonics of South Asia. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Klügel, J. U. (2005a). Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants. Engineering Geology, 78(3–4), 285–307.

    Article  Google Scholar 

  • Klügel, J. U. (2005b). Reply to the comment on JU Klügel’s: “problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants,” Eng. Geol. Vol. 78, pp. 285–307, by Budnitz et al. Engineering Geology, 82, 79–85.

    Article  Google Scholar 

  • Klügel, J. U. (2005c). Reply to the comment on JU Klügel’s: “problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants,” Eng. Geol. Vol. 78, pp. 285–307, by Musson et al. Engineering Geology, 82, 56–65.

    Article  Google Scholar 

  • Klügel, J. U. (2015). Lessons not yet learned from the Fukushima disaster. Acta Geodaetica et Geophysica, 50(1), 5–19.

    Article  Google Scholar 

  • Klügel, J. U., Mualchin, L., & Panza, G. F. (2006). A scenario-based procedure for seismic risk analysis. Engineering Geology, 88(1–2), 1–22.

    Article  Google Scholar 

  • Kolathayar, S., Sitharam, T. G., & Vipin, K. S. (2012). Deterministic seismic hazard macrozonation of India. Journal of Earth System Science, 121(5), 1351–1364.

    Article  Google Scholar 

  • Kramer, S. L. (1996). Geotechnical earthquake engineering. New Jersey: Prentice Hall.

    Google Scholar 

  • Krinitzsky, E. L. (1995). Deterministic versus probabilistic seismic hazard analysis for critical structures. Engineering Geology, 40(1–2), 1–7.

    Google Scholar 

  • Krinitzsky, E. L. (2002). How to obtain earthquake ground motions for engineering design. Engineering Geology, 65(1), 1–16.

    Article  Google Scholar 

  • Kumar, A., Anbazhagan, P., & Sitharam, T. G. (2013). Seismic hazard analysis of Lucknow considering local and active seismic gaps. Natural Hazards, 69(1), 327–350.

    Article  Google Scholar 

  • Liu, L., Gao, Y., Liu, B., & Li, S. (2019). Preliminary seismic hazard assessment for the proposed Bohai Strait subsea tunnel based on scenario earthquake studies. Journal of Applied Geophysics, 163, 13–21.

    Article  Google Scholar 

  • Mark, R. K. (1977). Application of linear statistical models of earthquake magnitude versus fault length in estimating maximum expectable earthquakes. Geology, 5(8), 464–466.

    Article  Google Scholar 

  • Molnar, P., Fitch, T. J., & Wu, F. T. (1973). Fault plane solutions of shallow earthquakes and contemporary tectonics in Asia. Earth and Planetary Science Letters, 19(2), 101–112.

    Article  Google Scholar 

  • Moratto, L., Orlecka-Sikora, B., Costa, G., Suhadolc, P., Papaioannou, C., & Papazachos, C. B. (2007). A deterministic seismic hazard analysis for shallow earthquakes in Greece. Tectonophysics, 442(1–4), 66–82.

    Article  Google Scholar 

  • Mualchin, L. (2011). History of modern earthquake hazard mapping and assessment in California using a deterministic or scenario approach. Pure and Applied Geophysics, 168(3–4), 383–407.

    Article  Google Scholar 

  • Muço, B., Vaccari, F., Panza, G., & Kuka, N. (2002). Seismic zonation in Albania using a deterministic approach. Tectonophysics, 344(3–4), 277–288.

    Article  Google Scholar 

  • Naik, N., & Choudhury, D. (2015). Deterministic seismic hazard analysis considering different seismicity levels for the state of Goa, India. Natural Hazards, 75(1), 557–580.

    Article  Google Scholar 

  • Nath, S. K., & Thingbaijam, K. K. S. (2011). Peak ground motion predictions in India: an appraisal for rock sites. Journal of Seismology, 15(2), 295–315.

    Article  Google Scholar 

  • NDMA. (2010). Development of probabilistic seismic hazard map of India. Technical report by National Disaster Management Authority, Government of India.

  • Nowroozi, A. A. (1985). Empirical relations between magnitudes and fault parameters for earthquakes in Iran. Bulletin of the Seismological Society of America, 75(5), 1327–1338.

    Google Scholar 

  • Parvez, I. A., Magrin, A., Vaccari, F., Mir, R. R., Peresan, A., & Panza, G. F. (2017). Neo-deterministic seismic hazard scenarios for India—A preventive tool for disaster mitigation. Journal of Seismology, 21(6), 1559–1575.

    Article  Google Scholar 

  • Parvez, I. A., Panza, G. F., Gusev, A. A., & Vaccari, F. (2002). Strong-motion amplitudes in Himalayas and a pilot study for the deterministic first-order microzonation in a part of Delhi city. Current Science, 82(2), 158–166.

    Google Scholar 

  • Parvez, I. A., Vaccari, F., & Panza, G. F. (2003). A deterministic seismic hazard map of India and adjacent areas. Geophysical Journal International, 155(2), 489–508.

    Article  Google Scholar 

  • Prakash, R., & Shrivastava, J. P. (2012). A review of the seismicity and seismotectonics of Delhi and adjoining areas. Journal of the Geological Society of India, 79(6), 603–617.

    Article  Google Scholar 

  • Raghu Kanth, S. T. G., & Iyengar, R. N. (2007). Estimation of seismic spectral acceleration in peninsular India. Journal of Earth System Science, 116(3), 199–214.

    Article  Google Scholar 

  • Rao, V. D., & Choudhury, D. (2018). Prediction of earthquake occurrence for a new nuclear power plant in India using probabilistic models. Innovative Infrastructure Solutions, 3(1), 79.

    Article  Google Scholar 

  • Rao, V. D., & Choudhury, D. (2020a). Probabilistic modelling for earthquake forecasting in the northwestern part of Haryana state, India. Pure and Applied Geophysics, 177(7), 3073–3087.

    Article  Google Scholar 

  • Rao, V. D., & Choudhury, D. (2020b). Estimation of shear wave velocity and seismic site characterization for new nuclear power plant region, India. Natural Hazards Review, 21(4), 06020004.

    Article  Google Scholar 

  • Reiter, L. (1990). Earthquake hazard analysis—Issues and insights. New York: Columbia University Press.

    Google Scholar 

  • Scherbaum, F., Delavaud, E., & Riggelsen, C. (2009). Model selection in seismic hazard analysis: An information-theoretic perspective. Bulletin of the Seismological Society of America, 99(6), 3234–3247.

    Article  Google Scholar 

  • Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. Journal of Seismology, 10(2), 225–236.

    Article  Google Scholar 

  • Sharma, M. L., Douglas, J., Bungum, H., & Kotadia, J. (2009). Ground-motion prediction equations based on data from the Himalayan and Zagros regions. Journal of Earthquake Engineering, 13(8), 1191–1210.

    Article  Google Scholar 

  • Shiuly, A., & Narayan, J. P. (2012). Deterministic seismic microzonation of Kolkata city. Natural Hazards, 60(2), 223–240.

    Article  Google Scholar 

  • Shreyasvi, C., Venkataramana, K., Chopra, S., & Rout, M. M. (2019). Probabilistic seismic hazard assessment of Mangalore and its adjoining regions, a part of Indian Peninsular: An intraplate region. Pure and Applied Geophysics, 176(6), 2263–2297.

    Article  Google Scholar 

  • Shukla, J., & Choudhury, D. (2012). Estimation of seismic ground motions using deterministic approach for major cities of Gujarat. Natural Hazards and Earth System Sciences, 12(6), 2019–2037.

    Article  Google Scholar 

  • Sitharam, T. G., & Anbazhagan, P. (2007). Seismic hazard analysis for the Bangalore region. Natural Hazards, 40(2), 261–278.

    Article  Google Scholar 

  • Slemmons, D. B., Bodin, P., & Zang, X. (1989). Determination of earthquake size from surface faulting events. In Proceedings of the international seminar on seismic zonation, Guangzhou, China (Vol. 13, pp. 157–169).

  • Srivastava, H. N., Verma, M., & Bansal, B. K. (2010). Seismological constraints for the 1905 Kangra earthquake and associated hazard in northwest India. Current Science, 99(11), 1549–1559.

    Google Scholar 

  • Stepp, J. C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In Proceedings of the 1st international conference on microzonazion, Seattle, USA (Vol. 2, pp. 897–910).

  • Toro, G. R., Abrahamson, N. A., & Schneider, J. F. (1997). Model of strong ground motions from earthquakes in central and eastern North America: Best estimates and uncertainties. Seismological Research Letters, 68(1), 41–57.

    Article  Google Scholar 

  • Vaccari, F., Tadili, B., El Qadi, A., Ramdani, M., Brahim, L. A., & Limouri, M. (2001). Deterministic seismic hazard assessment for North Morocco. Journal of Seismology and Earthquake Engineering, 3(1), 1–12.

    Google Scholar 

  • Wang, J. P., & Taheri, H. (2014). Seismic hazard assessment of the Tehran region. Natural Hazards Review, 15(2), 121–127.

    Article  Google Scholar 

  • Wang, Z. (2011). Seismic hazard assessment: issues and alternatives. Pure and Applied Geophysics, 168(1–2), 11–25.

    Article  Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974–1002.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for providing financial support with Grant Number 36(2)/15/04/2016-BRNS/36004-36029 (16BRNS012) to carry out the research work presented in this paper. The authors would like to express their gratitude to the Editor and anonymous reviewers for their valuable comments and thorough review of this manuscript, which improved the quality significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepankar Choudhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, V.D., Choudhury, D. Deterministic Seismic Hazard Analysis for the Northwestern Part of Haryana State, India, Considering Various Seismicity Levels. Pure Appl. Geophys. 178, 449–464 (2021). https://doi.org/10.1007/s00024-021-02669-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02669-3

Keywords

Navigation