Skip to main content
Log in

Analysis of Time Dynamical Features in Intraplate Versus Interplate Seismicity: The Case Study of Iquique Area (Chile)

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The intraplate and interplate seismic catalogues of Iquique (Chile) area were investigated by using seismological (b value of the Gutenberg–Richter law), fractal (Allan Factor and detrended fluctuation analysis) and topological (Horizontal Visibility Graph) methods. The two catalogues show different stress state indicated by the different b value, larger for the intraplate seismicity. The interplate seismicity shows significant time-clustering behavior of the earthquake occurrence times at large time scales, while the time distribution of the intraplate earthquakes seems to be featured by random fluctuations without any significant sign of time-clustering. Different role seems to be played by aftershocks in the two investigated seismic zones, revealed by the different time distribution of the aftershock-depleted catalogue of the intraplate zone, which remains Poissonian for most of the time scales, and the interplate zone that still keeps its clustering phenomenon but at higher timescales, thus shortening its clustering time scale range. Furthermore, the interevent times of the interplate catalogue are characterized by persistent dynamics even after removing the aftershocks, while uncorrelated fluctuations characterize the behavior of interevent intervals of the whole as well as aftershock-depleted intraplate catalogue. Additionally, the magnitudes of both catalogues are characterized by time-reversibility before and after the aftershock removal; while the interevent times of intraplate catalogue change their status from time-irreversibility to time-reversibility after removing the aftershocks. The obtained results seem to evidence a different role played by the aftershocks in the intraplate and interplate zones, that needs to be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aki, K. (1965). Maximum likelihood estimate of b in the formula log(N) = a-bM and its confidence limits. Bulletin Earthquake Research Institute Tokyo University, 43, 237–239.

    Google Scholar 

  • Andrieux, D., Gaspard, P., Ciliberto, S., Garnier, N., Joubaud, S., & Petrosyan, A. (2007). Entropy production and time asymmetry in nonequilibrium fluctuations. Physical Review Letters, 98, 150601.

    Google Scholar 

  • Baiesi, M., & Paczuski, M. (2004). Scale-free networks of earthquakes and aftershocks. Physics Review E., 69, 066106.

    Google Scholar 

  • Cammarota, C., & Rogora, E. (2007). Time reversal, symbolic series and irreversibility of human heartbeat. Chaos, Solitons and Fractals, 32, 1649–1654. https://doi.org/10.1016/j.chaos.2006.03.126.

    Article  Google Scholar 

  • Comte, D., & Pardo, M. (1991). Reappraisal of Great Historical Earthquakes in the Northern Chile and Southern Peru Seismic Gaps. Natural Hazards, 4, 23–44.

    Google Scholar 

  • Costa, M. D., Peng, C.-K., & Goldberger, A. L. (2008). Multiscale analysis of heart rate dynamics: Entropy and time irreversibility measures. Cardiovascular Engineering, 8, 88–93.

    Google Scholar 

  • Cover, T. M., & Thomas, J. A. (2006). Elements of information theory. New Jersey: Wiley.

    Google Scholar 

  • Davidsen, J., Gu, C., & Baiesi, M. (2015). Generalized Omori-Utsu law for aftershock sequences in southern California. Geophysics Journal of International, 201, 965–978.

    Google Scholar 

  • Daw, C. S., Finney, C. E. A., & Kennel, M. B. (2000). Symbolic approach for measuring temporal ‘‘irreversibility’’. Physical Review E, 62, 1912–1921.

    Google Scholar 

  • Derode, B., & Campos, J. (2019). Energy budget of intermediate-depth earthquakes in northern Chile: Comparison with shallow earthquakes and implications of rupture velocity models used. Geophysical Research Letters, 46, 2484–2493.

    Google Scholar 

  • Diks, C., van Houwelingen, J. C., Takens, F., & DeGoede, J. (1995). Reversibility as a criterion for discriminating time series. Physics Letters A, 201, 221–228.

    Google Scholar 

  • Dongsheng, L., Zhaobi, Z., & Binghong, W. (1994). Research into the multifractal of earthquake spatial distribution. Tectonophysics, 233, 91–97.

    Google Scholar 

  • Doxas, I., Dennis, S., & William, L. O. (2010). The dimensionality of discourse. Proceedings of National Academy of Science, 107, 4866–4871.

    Google Scholar 

  • Gaspard, P. (2004). Time-reversed dynamical entropy and irreversibility in Markovian random processes. Journal of Statistical Physics, 117, 599–615.

    Google Scholar 

  • Goebel, T. H. W., Schorlemmer, D., Becker, T. W., Dresen, G., & Sammis, C. G. (2013). Acoustic emissions document stress changes over many seismic cycles in stick-slip experiments. Geophysical Research Letters, 40, 2049–2054.

    Google Scholar 

  • Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena, 9, 189–208.

    Google Scholar 

  • Gutenberg, R., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188.

    Google Scholar 

  • Han, Q., Wang, L., Xu, J., Carpinteri, A., & Lacidogna, G. (2015). A robust method to estimate the b-value of the magnitude–frequency distribution of earthquakes. Chaos Solitons and Fractals, 81, 103–110.

    Google Scholar 

  • Hayes, G. P., Herman, M. W., Barnhart, W. D., Furlong, K. P., Riquelme, S., Benz, H. M., et al. (2014). Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature, 512, 295–298.

    Google Scholar 

  • Ishimoto, M., & Iida, K. (1939). Observations of earthquakes registered with the microseismograph constructed recently. Bulletin Earthquake Research Institute, University of Tokyo, 17, 443–478.

    Google Scholar 

  • Kárník, V., & Klíma, K. (1993). Magnitude-frequency distribution in the European-Mediterranean earthquake regions. Tectonophysics, 220, 309–323.

    Google Scholar 

  • Kausel, E. (1986). Los terremotos de Agosto de 1868 y Mayo de 1877 que afectaron el sur del Perú norte de Chile. Boletín de la Academia Chilena de Ciencias, 3, 8–12.

    Google Scholar 

  • Kawai, R., Parrondo, J. M. R., & Van den Broeck, C. (2007). Dissipation: The phase-space perspective. Physical Review Letters, 98, 080602. https://doi.org/10.1103/PhysRevLett.98.080602.

    Article  Google Scholar 

  • Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuno, J. C. (2008). From time series to complex networks: The visibility graph. Proceedings of the National academy of Sciences of the United States of America, 105, 4972–4975. https://doi.org/10.1073/pnas.0709247105.

    Article  Google Scholar 

  • Lacasa, L., Luque, B., Luque, J., & Nuño, J. C. (2009). The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion. EPL (Europhysics Letters), 86(3), 30001.

    Google Scholar 

  • Lacasa, L., Nuñez, A., Roldán, E., Parrondo, J. M. R., & Luque, B. (2012). Time series irreversibility: A visibility graph approach. European Physical Journal B: Condensed Matter and Complex Systems, 85, 217. https://doi.org/10.1140/epjb/e2012-20809-8.

    Article  Google Scholar 

  • Lennartz, S., Livina, V. N., Bunde, A., & Havlin, S. (2008). Long-term memory in earthquakes and the distribution of interoccurrence times. Europhysics Letters, 81, 69001.

    Google Scholar 

  • Lomnitz, C. (2004). Major earthquakes of Chile: A historical survey, 1535–1960. Seismological Research Letters, 75, N3.

    Google Scholar 

  • Lowen, S. B., Cash, S. S., Poo, M.-M., & Teich, M. C. (1997). Quantal neurotransmitter secretion rate exhibits fractal behavior. The Journal of Neuroscience, 17, 5666–5677.

    Google Scholar 

  • Luque, B., Lacasa, L., Luque, J., & Ballesteros, F. (2009). Horizontal visibility graphs: Exact results for random time series. Physical Review E, 80, 046103.

    Google Scholar 

  • Malgrange, M., & Madariaga, R. (1983). Complex distribution of large thrust and normal fault earthquakes in the Chilean subduction zone. Geophysical Journal International, 73(2), 489–505.

    Google Scholar 

  • Métois, M., Socquet, A., & Vigny, C. (2012). Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone. Journal of Geophysics Research, 117, B03406.

    Google Scholar 

  • Métois, M., Vigny, C., & Socquet, A. (2016). Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°–18°S). Pure and Applied Geophysics, 173, 1431–1449.

    Google Scholar 

  • Montessus de Ballore, F., (1911–1916). Historia Sísmica de los Andes Meridionales, al sur del Paralelo XVI, Cervantes, Santiago de Chile.

  • Naylor, M., Greenhough, J., McCloskey, J., Bell, A. F., & Main, I. G. (2009). Statistical evaluation of characteristic earthquakes in the frequency magnitude distributions of Sumatra and other subduction zone regions. Geophysical Research Letters, 36, L20303. https://doi.org/10.1029/2009GL040460.

    Article  Google Scholar 

  • Parrondo, J. M. R., Van den Broeck, C., & Kawai, R. (2009). Entropy production and the arrow of time. New Journal of Physics, 11, 073008.

    Google Scholar 

  • Peng, C.-K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. CHAOS, 5, 82–87.

    Google Scholar 

  • Peresan, A., & Gentili, S. (2020). Identification and characterisation of earthquake clusters: A comparative analysis for selected sequences in Italy and adjacent regions. Bollettino di Geofisica Teorica ed Applicata, 61, 57–80.

    Google Scholar 

  • Peyrat, S., Madariaga, R., Buforn, E., Campos, J., Asch, G., & Vilotte, J. P. (2010). Kinematic rupture process of the 2007 Tocopilla earthquake and its main aftershocks from teleseismic and strongmotion data. Geophysics Journal International, 182(3), 1411–1430.

    Google Scholar 

  • Roldan, E., & Parrondo, J. M. R. (2010). Estimating dissipation from single stationary trajectories. Physical Review Letters, 105, 150607.

    Google Scholar 

  • Ruegg, J. C., Campos, J., Armijo, R., Barrientos, S., Briole, P., Thiele, R., et al. (1996). The Mw = 8.1 Antofagasta (North Chile) earthquake of July 30, 1995: First results from teleseismic and geodetic data. Geophysics Research Letters, 23(9), 917–920.

    Google Scholar 

  • Ruiz, S., & Madariaga, R. (2018). Historical and recent large megathrust earthquakes in Chile. Tectonophysics, 733, 37–56.

    Google Scholar 

  • Schleussner, C.-F., Divine, D. V., Donges, J. F., Miettinen, A., & Donner, R. V. (2015). Indications for a North Atlantic ocean circulation regime shift at the onset of the Little Ice Age. Climate Dynamics, 45, 3623–3633. https://doi.org/10.1007/s00382-015-2561-x.

    Article  Google Scholar 

  • Scholz, C. H. (1968). Microfracturing and the inelastic deformation of rock in compression. Journal of Geophysical Research, 73, 1417–1432.

    Google Scholar 

  • Scholz, C. H. (2015). On the stress dependence of the earthquake b value. Geophysical Research Letters, 42, 1399–1402.

    Google Scholar 

  • Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437, 539–542.

    Google Scholar 

  • Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitude-frequency b-value. Bulletin of the Seismological Society of America, 72, 1677–1687.

    Google Scholar 

  • Sippl, C., Schurr, B., Asch, G., & Kummerow, J. (2018a). Seismicity structure of the northern Chile forearc from > 100,000 double-difference relocated hypocenters. Journal of Geophysical Research Solid Earth Solid Earth, 123, 4063–4087.

    Google Scholar 

  • Sippl, C., Schurr, B., Asch, G., & Kummerow, J. (2018b). Catalogue of earthquake hypocenters for northern Chile compiled from IPOC (plus auxiliary) seismic stations. GFZ Data Services. https://doi.org/10.5880/GFZ.4.1.2018.001.

    Article  Google Scholar 

  • Sippl, C., Schurr, B., John, T., & Hainzl, S. (2019). Filling the gap in a double seismic zone: Intraslab seismicity in Northern Chile. Lithos, 346–347, 105155.

    Google Scholar 

  • Spada, M., Tormann, T., Wiemer, S., & Enescu, B. (2013). Generic dependence of the frequency-size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophysical Research Letters, 40, 709–714.

    Google Scholar 

  • Stone, L., Landan, G., & May, R. M. (1996). Detecting time’s arrow: A method for identifying nonlinearity and deterministic chaos in time-series data. Proceeding of Royal Society of London Series B, 263, 1509–1513.

    Google Scholar 

  • Telesca, L., & Chen, C.-C. (2019). Fractal and spectral investigation of the shallow seismicity in Taiwan. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2018.10.009.

    Article  Google Scholar 

  • Telesca, L., Chen, C.-C., & Lovallo, M. (2020). Investigating the relationship between seismological and topological properties of seismicity in Italy and Taiwan. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-020-02470-8.

    Article  Google Scholar 

  • Telesca, L., Cuomo, V., Lapenna, V., & Macchiato, M. (2001). Statistical analysis of fractal properties of point processes modelling seismic sequences. Physics Earth Planetary International, 125, 65–83.

    Google Scholar 

  • Telesca, L., Cuomo, V., Lapenna, V., & Vallianatos, F. (2000). Self-similarity properties of seismicity in the Southern Aegean area. Tectonophysics, 321, 179–188.

    Google Scholar 

  • Telesca, L., Fat-Elbary, R., Stabile, T. A., Haggag, M., & Elgabry, M. (2017a). Dynamical characterization of the 1982–2015 seismicity of Aswan region (Egypt). Tectonophysics, 712–713, 132–144.

    Google Scholar 

  • Telesca, L., Flores-Márquez, E. L., & Ramírez-Rojas, A. (2018). Time-reversibility in seismic sequences: Application to the seismicity of Mexican subduction zone. Physica A: Statistical Mechanics and its Applications, 492, 1373–1381.

    Google Scholar 

  • Telesca, L., Kadirov, F., Yetirmishli, G., Safarov, R., Babayev, G., & Ismaylova, S. (2017b). Statistical analysis of the 2003–2016 seismicity of Azerbaijan and surrounding areas. Journal of Seismology, 21, 1467–1485.

    Google Scholar 

  • Telesca, L., & Lovallo, M. (2008). Analysis of the temporal properties in car accident time series. Physica A, 387, 3299–3304.

    Google Scholar 

  • Telesca, L., & Lovallo, M. (2009). Non-uniform scaling features in Central Italy seismicity: A non-linear approach in investigating seismic patterns and detection of possible earthquake precursors. Geophysical Research Letters, 36, L01308.

    Google Scholar 

  • Telesca, L., & Lovallo, M. (2010). Long-range dependence in tree-ring width time series of Austrocedrus chilensis revealed by means of the detrended fluctuation analysis. Physica A, 389, 4096–4104.

    Google Scholar 

  • Telesca, L., & Lovallo, M. (2011). Analysis of time dynamics in wind records by means of multifractal detrended fluctuation analysis and Fisher-Shannon information plane. Journal of Statics Mechanics, 201, P07001.

    Google Scholar 

  • Telesca, L., Lovallo, M., Lopez, M. C., & Molist, J. M. (2016). Multiparametric statistical investigation of seismicity occurred at El Hierro (Canary Islands) from 2011 to 2014. Tectonophysics, 672–673, 121–128. https://doi.org/10.1016/j.tecto.2016.01.045.

    Article  Google Scholar 

  • Telesca, L., Mohamed, A. E.-E. A., ElGabry, M., El-hady, S., & Abou Elenean, K. M. (2012). Time dynamics in the point process modelling of seismicity of Aswan area (Egypt). Chaos, Solitons and Fractals, 45, 47–55.

    Google Scholar 

  • Thurner, S., Lowen, S. B., Feurstein, M. C., Heneghan, C., Feichtinger, H. G., & Teich, M. C. (1997). Analysis, synthesis, and estimation of fractal-rate stochastic point processes. Fractals, 5, 565–595.

    Google Scholar 

  • Tormann, T., Enescu, B., Woessner, J., & Wiemer, S. (2015). Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nature Geoscience, 8, 152–158.

    Google Scholar 

  • Utsu, T. (1999). Representation and analysis of the earthquake size distribution: A historical review and some new approaches. Pageoph, 155, 509–535.

    Google Scholar 

  • Varotsos, P., Sarlis, N., & Skordas, E. (2012). Scale-specific order parameter fluctuations of seismicity before mainshocks: Natural time and detrended fluctuation analysis. Europhysics Letters, 99(59), 001.

    Google Scholar 

  • Varotsos, P. A., Sarlis, N. V., & Skordas, E. S. (2014). Study of the temporal correlations in the magnitude time series before major earthquakes in Japan. Journal of Geophysics Research Space Physics, 119, 9192–9206.

    Google Scholar 

  • Vidal Gormaz, F., (1877). Hundimiento o solevantamiento de los archipiélagos australes de Chile. Santiago, Imprenta Mejía, p. 1901.

  • Wang, Q., Kulkarni, S. R., & Verdú, S. (2005). Divergence estimation of continuous distributions based on data-dependent partitions. IEEE Transactions on Information Theory, 51, 3064–3074.

    Google Scholar 

  • Weiss, G. (1975). Time-reversibility of linear stochastic processes. Journal of Applied Probability, 12, 831–836.

    Google Scholar 

  • Wiemer, S. (2001). A software package to analyze seismicity: ZMAP, 2001. Seismological Research Letters, 72, 373–382.

    Google Scholar 

  • Wiemer, S., & Wyss, M. (2000). Minimum magnitude of complete reporting in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90, 859–869.

    Google Scholar 

  • Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95, 684–698.

    Google Scholar 

  • Wyss, M. (1973). Towards a physical understanding of the earthquake frequency distribution. Geophysics Journal of Research Astronomy Society, 31, 341–359.

    Google Scholar 

  • Yang, A. C., Hseu, S. S., Yien, H. W., Goldberger, A. L., & Peng, C.-K. (2003). Linguistic analysis of the human heartbeat using frequency and rank order statistics. Physical Review Letters, 90, 108–109. https://doi.org/10.1103/PhysRevLett.90.108103.

    Article  Google Scholar 

  • Zaliapin, I., & Ben-Zion, Y. (2013). Earthquake clusters in southern California, I: Identification and stability. Journal of Geophysical Research, 118, 2847–2864. https://doi.org/10.1002/jgrb.50179.

    Article  Google Scholar 

  • Zaliapin, I., & Ben-Zion, Y. (2016). Discriminating characteristics of tectonic and human-induced seismicity. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120150211.

    Article  Google Scholar 

  • Zaliapin, I., Gabrielov, A., Wong, H., & Keilis-Borok, V. I. (2008). Clustering analysis of seismicity and aftershock identification. Physical Review Letters, 101, 018501.

    Google Scholar 

Download references

Acknowledgements

DP thanks Proyecto Fondecyt N°11160452. VM thanks Proyecto Fondecyt N°1161711. The authors are grateful to I. Zaliapin for providing the code for nearest-neighbour analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denisse Pastén.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telesca, L., Pastén, D. & Muñoz, V. Analysis of Time Dynamical Features in Intraplate Versus Interplate Seismicity: The Case Study of Iquique Area (Chile). Pure Appl. Geophys. 177, 4755–4773 (2020). https://doi.org/10.1007/s00024-020-02554-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02554-5

Keywords

Navigation