Ai, F., Förster, A., Stegmann, S., & Kopf, A. (2014). Geotechnical characteristics and slope stability analysis on the deeper slope of the Ligurian margin, Southern France. In K. Sassa, P. Canuti, & Y. Yin (Eds.), Landslide science for a safer geoenvironment (pp. 549–555). https://doi.org/10.1007/978-3-319-04996-0_84.
Anderson, J. G., Bodin, P., Brune, J. N., Prince, J., Singh, S. K., Quaas, R., et al. (1986). Strong ground motion from the Michoacan, Mexico earthquake. Science,233(4768), 1043–1049.
Google Scholar
Ardhuin, F., Stutzmann, E., Schimmel, M., & Mangeney, A. (2011). Ocean wave sources of seismic noise. Journal of Geophysical Research,116, C09004. https://doi.org/10.1029/2011JC006952.
Article
Google Scholar
Bonilla, L. F., Tsuda, K., Pulido, N., Régnier, J., & Laurendeau, A. (2011). Nonlinear site response evidence of K-NET and KiK-net records from the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space,63(7), 50.
Google Scholar
Boore, D. M., & Smith, C. E. (1999). Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System (SEMS) instruments deployed off the coast of southern California. Bulletin of the Seismological Society of America,89(1), 260–274.
Google Scholar
Borcherdt, R. D., & Gibbs, J. F. (1976). Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake. Bulletin of the Seismological Society of America,66, 467–500.
Google Scholar
Cavalié, O., Sladen, A., & Kelner, M. (2015). Detailed quantification of delta subsidence, compaction and interaction with man-made structures: the case of the NCA airport, France. Natural Hazards and Earth System Sciences,15, 1973–1984.
Google Scholar
Chousianitis, K., Del Gaudio, V., Sabatakakis, N., Kavoura, K., Drakatos, G., Bathrellos, G. D., et al. (2016). Assessment of earthquake-induced landslide hazard in Greece: From arias intensity to spatial distribution of slope resistance demand assessment of earthquake-induced landslide hazard in Greece. Bulletin of the Seismological Society of America,106(1), 174–188.
Google Scholar
Clauzon, G. (1978). The Messinian Var canyon (Provence, Southern France)—paleogeographic implications. Marine Geology,27(3–4), 231–246.
Google Scholar
Clayton, R. W., Heaton, T., Kohler, M., Chandy, M., Guy, R., & Bunn, J. (2015). Community seismic network: A dense array to sense earthquake strong motion. Seismological Research Letters,86(5), 1354–1363.
Google Scholar
Courboulex, F., Larroque, C., Deschamps, A., Kohrs-Sansorny, C., Gélis, C., Got, J. L., et al. (2007). Seismic hazard on the French Riviera: Observations, interpretations and simulations. Geophysical Journal International,170, 387–400. https://doi.org/10.1111/j.1365-246X.2007.03456.x.
Article
Google Scholar
Cruz-Atienza, V. M., Tago, J., Sanabria-Gómez, J. D., Chaljub, E., Etienne, V., Virieux, J., et al. (2016). Long duration of ground motion in the paradigmatic valley of Mexico. Scientific Reports,6, 38807.
Google Scholar
Dan, G., Sultan, N., & Savoye, B. (2007). The 1979 Nice harbour catastrophe revisited: Trigger mechanism inferred from geotechnical measurements and numerical modelling. Marine Geology,245, 40–64. https://doi.org/10.1016/j.margeo.2007.06.011.
Article
Google Scholar
Dubar, M., & Anthony, E. J. (1995). Holocene environnemental change and river-mouth sedimentation in the Baie des Anges, French Riviera. Quaternary Research,43, 329–343.
Google Scholar
Duval, A. M., Bertrand, E., Vidal, S. & Delgado, J. (2013). Détection des effets de site sismiques: Mise au point de méthodes expérimentales et application à Nice. Bulletin du laboratoire de ponts et Chaussées, 279, 3–20.
Duval, A. M., & Vidal, S. (2003). Contribution à l’étude de l’aléa local à Nice: Complément d’analyse du bruit de fond sismique. Rapport CETE Méditerranée, n° 987400136/04.
Field, E. H., & Jacob, K. H. (1995). A comparison and test of various site response estimation techniques, including three that are not reference site dependent. Bulletin of the Seismological Society of America,85(4), 1127–1143.
Google Scholar
Frontera, T., Ugalde, A., Olivera, C., Jara, J. A., & Goula, X. (2010). Seismic ambient noise characterization of a new permanent broadband ocean bottom seismometer site offshore Catalonia (Northeastern Iberian Peninsula). Seismological Research Letters,81(5), 740–749.
Google Scholar
Gennesseaux, M., Mauffret, A., & Pautot, G. (1980). Les glissements sous-marins de la pente continentale Niçoise et la rupture de câbles en mer Ligure (Mediterranée Occidentale). Comptes Rendus de l’Académie des Sciences,290, 959–962.
Google Scholar
Goldfinger, C., Ikeda, Y., Yeats, R. S., & Ren, J. (2013). Superquakes and supercycles. Seismological Research Letters,84, 24–32. https://doi.org/10.1785/0220110135.
Article
Google Scholar
Gomberg, J. (2018). Cascadia onshore-offshore site response, submarine sediment mobilization, and earthquake recurrence. Journal of Geophysical Research: Solid Earth,123(2), 1381–1404.
Google Scholar
Guglielmi, Y., (1993). Hydrogéologie des aquifères Plio-Quaternaires de la basse vallée du Var. Ph.D. Thesis, Université d’Avignon et des Pays du Vaucluse, 178 pp.
Hassoun, V., Martin, J., Migeon, S., Larroque, C., Cattaneo, A., Eriksson, M., & Heimbürger, L. E. (2014). Searching for the record of historical earthquakes, floods and anthropogenic activities in the var sedimentary ridge (NW Mediterranean). In Submarine mass movements and their consequences (pp. 571–581). Cham: Springer. https://doi.org/10.1007/978-3-319-00972-8_51.
Horn R., Ménard F. & Munk F. (1965). Etude géophysique de la basse vallée du Var. Rapport B.R.G.M. DS.65.A 37 (http://infoterre.brgm.fr/rapports/65-DS-A037.pdf).
Ioualalen, M., Larroque, C., Scotti, O., & Daubord, C. (2014). Tsunami mapping related to local earthquakes on the French–Italian Riviera (Western Mediterranean). Pure and Applied Geophysics,171(7), 1423–1443.
Google Scholar
Ioualalen, M., Migeon, S., & Sardoux, O. (2010). Landslide tsunami vulnerability in the Ligurian Sea: Case study of the 1979 October 16 Nice international airport submarine landslide and of identified geological mass failures. Geophysical Journal International,181(2), 724–740.
Google Scholar
Kawamura, K., Laberg, J. S., & Kanamatsu, T. (2014). Potential tsunamigenic submarine landslides in active margins. Marine Geology,356, 44–49.
Google Scholar
Kelner, M., Migeon, S., Tric, E., Courboulex, F., Dano, A., Lebourg, T., et al. (2016). Frequency and triggering of small-scale submarine landslides on decadal timescales: Analysis of 4D bathymetric data from the continental slope offshore Nice (France). Marine Geology,379, 281–297.
Google Scholar
Klaucke, I., & Cochonat, P. (1999). Analysis of past seafloor failures on the continental slope off Nice (SE France). Geo-Marine Letters,19(4), 245–253.
Google Scholar
Komatitsch, D., Vilotte, J.-P., Cristini, P., Labarta, J., Le Goff, N., Le Loher, P., Liu, Q., Martin, R., Matzen, R., Morency, C., Peter, D., Tape, C., Tromp, J., & Xie, Z. (2012). SPECFEM2D v7.0.0 [software], Computational infrastructure for geodynamics. https://geodynamics.org/cig/software/specfem2d/.
Kopf, A. J., Stegmann, S., Garziglia, S., Henry, P., Dennielou, B., Haas, S., et al. (2016). Soft sediment deformation in the shallow submarine slope off Nice (France) as a result of a variably charged Pliocene aquifer and mass wasting processes. Sedimentary Geology,344, 290–309.
Google Scholar
Krijgsman, W., Langereis, C. G., Zachariasse, W. J., Boccaletti, M., Moratti, G., Gelati, R., et al. (1999). Late Neogene evolution of the Taza-Guercif Basin (Rifian Corridor, Morocco) and implications for the Messinian salinity crisis. Marine Geology,153(1–4), 147–160.
Google Scholar
Kubo, H., Nakamura, T., Suzuki, W., Kimura, T., Kunugi, T., Takahashi, N., et al. (2018). Site amplification characteristics at nankai seafloor observation network, DONET1, Japan, evaluated using spectral inversion. Bulletin of the Seismological Society of America,108(3A), 1210–1218. https://doi.org/10.1785/0120170254.
Article
Google Scholar
Larroque, C., Béthoux, N., Calais, E., Courboulex, F., Deschamps, A., Déverchère, J., et al. (2001). Active and recent deformation at the Southern Alps-Ligurian basin junction. Geologie en Mijnbouw,80, 255–272.
Google Scholar
Larroque, C., Delouis, B., Sage, F., Régnier, M., Béthoux, N., Courboulex, F., et al. (2016). The sequence of moderate-size earthquakes at the junction of the Ligurian basin and the Corsica margin (western Mediterranean): The initiation of an active deformation zone revealed? Tectonophysics,676, 135–147.
Google Scholar
Larroque, C., Scotti, O., & Ioualalen, M. (2012). Reappraisal of the 1887 Ligurian earthquake (western Mediterranean) from macroseismicity, active tectonics and tsunami modelling: Reappraisal of the 1887 Ligurian earthquake. Geophysical Journal International,190, 87–104.
Google Scholar
Laurendeau, A., Courboulex, F., Bonilla, L. F., Alvarado, A., Alfonso, Naya V., Mercerat, D., et al. (2017). Low frequency seismic amplification in the quito basin (ecuador) revealed by accelerometric recordings of the RENAC network. Bulletin of the Seismological Society of America,107(6), 2917–2926.
Google Scholar
Li, C., Hao, H., Li, H., Bi, K., & Chen, B. (2017). Modeling and simulation of spatially correlated ground motions at multiple onshore and offshore sites. Journal of Earthquake Engineering,21(3), 359–383.
Google Scholar
Locat, J., & Lee, H. J. (2002). Submarine landslides: Advances and challenges. Canadian Geotechnical Journal,39, 193–212. https://doi.org/10.1139/t01-089.
Article
Google Scholar
Lofi, J., Déverchère, J., Gaullier, V., Gillet, H., Gorini, C., Guennoc, P., et al. (2011). Atlas of the “Messinian Salinity Crisis” seismic markers in the Mediterranean and Black seas. CCGM & Mémoire Société Géologique de France,179, 72.
Google Scholar
Meunier, P., Hovius, N., & Haines, A. J. (2007). Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophysical Research Letters, 34(20). https://doi.org/10.1029/2007GL031337
Migeon, S., Cattaneo, A., Hassoun, V., Dano, A., Casedevant, A., & Ruellan, E. (2012). Failure processes and gravity-flow transformation revealed by high-resolution AUV swath bathymetry on the Nice continental slope (Ligurian Sea). In: Y. Yamada et al. (Eds.), Submarine mass movements and their consequences. Advances in natural and technological hazards research (Vol. 31). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-2162-3_40
Migeon, S., Cattaneo, A., Hassoun, V., Larroque, C., Corradi, N., Fanucci, F., et al. (2011). Morphology, distribution and origin of recent submarine landslides of the Ligurian Margin (North-western Mediterranean): Some insights into geohazard assessment. Marine Geophysical Research,32, 225–243.
Google Scholar
Migeon, S., Mulder, T., Savoye, B., & Sage, F. (2006). The Var turbidite system (Ligurian Sea, northwestern Mediterranean)—morphology, sediment supply, construction of turbidite levee and sediment waves: Implications for hydrocarbon reservoirs. Geo-Marine Letters,26, 361–371. https://doi.org/10.1007/s00367-006-0047-x.
Article
Google Scholar
Milana, G., Cultrera, G., Bordoni, P., Bucci, A., Cara, F., Cogliano, R., et al. (2019). Local site effects estimation at Amatrice (Central Italy) through seismological methods. Bulletin of Earthquake Engineering, 1–27. https://doi.org/10.1007/s10518-019-00587-3
Mulder, T., Savoye, B., & Syvitski, J. P. M. (1997). Numerical modelling of a mid-sized gravity flow: The 1979 Nice turbidity current (dynamics, processes, sediment budget and seafloor impact). Sedimentology,44, 305–326.
Google Scholar
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30, 25–33.
Google Scholar
Nakamura, T., Takenaka, H., Okamoto, T., Ohori, M., & Tsuboi, S. (2015). Long-period ocean-bottom motions in the source areas of large subduction earthquakes. Scientific reports,5, 16648.
Google Scholar
Nocquet, J. M. (2012). Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics,579, 220–242.
Google Scholar
Piper, D. J., Cochonat, P., & Morrison, M. L. (1999). The sequence of events around the epicentre of the 1929 Grand Banks earthquake: Initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology,46(1), 79–97.
Google Scholar
Piper, D. J., & Savoye, B. (1993). Processes of late Quaternary turbidity current flow and deposition on the Var deep-sea fan, north-west Mediterranean Sea. Sedimentology,40(3), 557–582.
Google Scholar
Priest, G. R., Witter, R. C., Zhang, Y. J., Goldfinger, C., Wang, K., & Allan, J. C. (2017). New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites. Natural Hazards,88(1), 285–313. https://doi.org/10.1007/s11069-017-2864-9.
Article
Google Scholar
Ratzov, G., Cattaneo, A., Babonneau, N., Déverchère, J., Yelles, K., Bracene, R., et al. (2015). Holocene turbidites record earthquake supercycles at a slow-rate plate boundary. Geology,43(4), 331–334.
Google Scholar
Régnier, J., Cadet, H., & Bard, P. Y. (2016). Empirical quantification of the impact of nonlinear soil behavior on site response. Bulletin of the Seismological Society of America,106(4), 1710–1719.
Google Scholar
Rehault, J. P., & Bethoux, N. (1984). Earthquake relocation in the Ligurian Sea (Western Mediterranean): Geological interpretation. Marine Geology,55(3–4), 429–445.
Google Scholar
RESIF. (1995). RESIF-RAP French Accelerometric Network; RESIF—Réseau Sismologique et géodésique Français. https://doi.org/10.15778/resif.ra.
RESIF. (1995). RESIF-RLBP French Broad-band Network, RESIF-RAP strong motion network and other seismic stations in metropolitan France; RESIF—Réseau Sismologique et géodésique Français. https://doi.org/10.15778/resif.fr.
Roesner, A., Wiemer, G., Kreiter, S., Wenau, S., Wu, T. W., Courboulex, F., et al. (2019). Impact of seismicity on Nice slope stability—Ligurian Basin. SE France: A geotechnical revisit. Landslides,16(1), 23–35.
Google Scholar
Rohmer O., Bertrand E., Mercerat E.D., Régnier J., Pernoud M., Langlaude P & Alvarez M. (2019). Combining borehole log-stratigraphies and ambient vibration data to build a 3D Model of the Lower Var Valley, Nice (France), under minor revision. Eng Geol.
Salichon, J., Kohrs-Sansorny, C., Bertrand, E., & Courboulex, F. (2010). A Mw 63 earthquake scenario in the city of Nice (southeast France): Ground motion simulations. Journal of Seismology,14(3), 523–541.
Google Scholar
Sanchez-Sesma, F. J., & Crouse, C. B. (2015). Effects of site geology on seismic ground motion: Early history. Earthquake Engineering & Structural Dynamics,44, 1099–1113.
Google Scholar
Semblat, J. F., Duval, A. M., & Dangla, P. (2000). Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments. Soil Dynamics and Earthquake Engineering,19(5), 347–362.
Google Scholar
Semblat, J.-F., Kham, M., & Bard, P.-Y. (2008). Seismic-wave propagation in alluvial basins and influence of site-city interaction. Bulletin of the Seismological Society of America,98(6), 2665–2678.
Google Scholar
Séranne, M. (1999). The Gulf of Lion continental margin (NW Mediterranean) revisited by IBS: An overview. Geological Society, London, Special Publications,156(1), 15–36.
Google Scholar
St Fleur, S., Bertrand, E., Courboulex, F., Mercier de Lépinay, B., Deschamps, A., Hough, S., et al. (2016). Site effects in Port-au-Prince (Haiti) from the analysis of spectral ratio and numerical simulations. Bulletin of the Seismological Society of America,106(3), 1298–1315. https://doi.org/10.1785/0120150238.
Article
Google Scholar
Stegmann, S., & Kopf, A. (2014). How stable is the Nice slope?–An analysis based on strength and cohesion from ring shear experiments. In Submarine mass movements and their consequences (pp. 189–199). Cham: Springer.
Stegmann, S., Sultan, N., Kopf, A., Apprioual, R., & Pelleau, P. (2011). Hydrogeology and its effect on slope stability along the coastal aquifer of Nice, France. Marine Geology,280(1–4), 168–181.
Google Scholar
Steiner, A., Kopf, A. J., Henry, P., Stegmann, S., Apprioual, R., & Pelleau, P. (2015). Cone penetration testing to assess slope stability in the 1979 Nice landslide area (Ligurian Margin, SE France). Marine Geology,369, 162–181. https://doi.org/10.1016/j.margeo.2015.08.008.
Article
Google Scholar
Stockwell, R. G., Mansinha, L., & Lowe, R. P. (1996). Localization of the complex spectrum: The S transform. IEEE Transactions on Signal Processing,44(4), 998–1001.
Google Scholar
Sultan, N., Cochonat, P., Canals, M., Cattaneo, A., Dennielou, B., Haflidason, H., et al. (2004). Triggering mechanisms of slope instability processes and sediment failures on continental margins: A geotechnical approach. Marine Geology,213(1–4), 291–321. https://doi.org/10.1016/j.margeo.2004.10.011.
Article
Google Scholar
Sultan, N., Savoye, B., Jouet, G., Leynaud, D., Cochonat, P., Henry, P., et al. (2010). Investigation of a possible submarine landslide at the Var delta front (Nice continental slope, southeast France). Canadian Geotechnical Journal,47, 486–496. https://doi.org/10.1139/T09-105.
Article
Google Scholar
Tromp, J., Komatitsch, D., & Liu, Q. (2008). Spectral-element and adjoint methods in seismology. Communications in Computational Physics, 3(1), 1–32.
Google Scholar
Wartman, J., Dunham, L., Tiwari, B., & Pradel, D. (2013). Landslides in eastern Honshu induced by the 2011 Tohoku earthquake. Bulletin of the Seismological Society of America,103(2B), 1503–1521.
Google Scholar
Yamanaka, H., Seo, K., & Samano, T. (1989). Effects of sedimentary layers on surface-wave propagation. Bulletin of the Seismological Society of America,79(3), 631–644.
Google Scholar