Skip to main content
Log in

Characterization of Different Rainfall Types from Surface Observations Over a Tropical Location

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This study characterizes different rainfall types using surface-based instruments (i.e. micro rain radar and laser precipitation monitor) installed at the Indian Institute of Technology Bhubaneswar Jatani, Odisha, India. A total of twelve rainfall cases including four from each season, i.e. pre-monsoon, monsoon and post-monsoon, are considered. The segregation of rainfall is carried out using radar reflectivity and rainfall intensity. In general, initial rainfall is dominantly convective and followed by a stratiform type. Two distinct maxima of radar reflectivity are noted at 3 and 5 km, suggesting the presence of high liquid water content and a melting band. The presence of liquid water content suggests occurrence of a warm rain process with shallow, intense convective cores. Results indicate a higher drop number density below 2 km with smaller size drops for convective rainfall and vice versa for the stratiform rainfall. Furthermore, ZR relationships are computed for all the cases using a linear regression method, and the results suggest that the stratiform rainfall shows a higher slope parameter and lower intercept parameter as compared to convective rainfall. The distribution of drop number density shows a mono-modal and bimodal pattern for convective and stratiform rainfall, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Badron, K., Ismail, A. F., Asnawi, A. L., Malik, N. F. A., Abidin, S. Z., & Dzulkifly, S. (2014). Classification of precipitation types detected in Malaysia. International Journal of Electrical, Electronic and Communication Sciences, 8(8), 1379–1383.

    Google Scholar 

  • Baisya, H., Pattnaik, S., Hazra, V., Sisodiya, A., & Rai, D. (2018). Ramifications of atmospheric humidity on monsoon depressions over the Indian subcontinent. Scientific Reports, 8, 9927. https://doi.org/10.1038/s41598-018-28365-2.

    Article  Google Scholar 

  • Baisya, H., Pattnaik, S., & Rajesh, P. V. (2017). Land surface-precipitation feedback analysis for a landfalling monsoon depression in the Indian region. Journal of Advances in Modeling Earth Systems,9(1), 712–726.

    Article  Google Scholar 

  • Boos, W. R., Mapes, B. E., & Murthy, V. S. (2017). Chapter 15: Potential vorticity structure and propagation mechanism of Indian monsoon depressions. In The global monsoon system. World scientific series on Asia-Pacific weather and climate (Vol. 9, pp. 187–199). https://doi.org/10.1142/9789813200913_0015.

    Chapter  Google Scholar 

  • Chan, J. C. L. (2017). Physical mechanisms responsible for Track Changes and Rainfall Distribution Associated with Tropical Cyclone Landfall. https://doi.org/10.1093/oxfordhb/9780190699420.013.16.

    Book  Google Scholar 

  • Chapon, B., Delrieu, G., Gosset, M., & Boudevillain, B. (2008). Variability of rain drop size distribution and its effect on the Z–R relationship: A case study for intense Mediterranean rainfall. Atmospheric Research,87(1), 52–65.

    Article  Google Scholar 

  • Cifelli, R., Williams, C. R., Rajopadhyaya, D. K., Avery, S. K., Gage, K. S., & May, P. T. (2000). Drop-size distribution characteristics in tropical mesoscale convective systems. Journal of Applied Meteorology,39(6), 760–777.

    Article  Google Scholar 

  • Das, S. (2017). Severe thunderstorm observation and modeling—a review. Vayu Mandal,43(2), 1–29.

    Google Scholar 

  • Das, S., & Maitra, A. (2016). Vertical profile of rain: Ka band radar observations at tropical locations. Journal of Hydrology,534, 31–41.

    Article  Google Scholar 

  • Das, S., Shukla, A. K., & Maitra, A. (2010). Investigation of vertical profile of rain microstructure at Ahmedabad in Indian tropical region. Advances in Space Research,45, 1235–1243.

    Article  Google Scholar 

  • Dash, S. K., Kulkarni, M. A., Mohanty, U. C., & Prasad, K. (2009). Changes in the characteristics of rain events in India. Journal of Geophysical Research: Atmosphere,114(D10109), 1–12.

    Google Scholar 

  • Fabry, F., & Zawadzki, I. (1995). Long-term radar observations of the melting layer of precipitation and their interpretation. Journal of the Atmospheric Science,52, 838–851.

    Article  Google Scholar 

  • Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events in a warming environment. Science,314, 1442–1445.

    Article  Google Scholar 

  • Houze, R. A. (1997). Stratiform precipitation in regions of convection: A meteorological paradox? Bulletin of American Meteorological Society,78, 2179–2196.

    Article  Google Scholar 

  • Houze, R. A., & Cheng, C. P. (1977). Radar characteristics of tropical convection observed during GATE: Mean properties and trends over the summer season. Monthly Weather Review,105, 964–980.

    Article  Google Scholar 

  • Hunt, K. M. R., Turner, A. G., Inness, P. M., Parker, D. E., & Levine, R. C. (2016). On the structure and dynamics of Indian Monsoon Depressions. Monthly Weather Review,144, 3391–3416.

    Article  Google Scholar 

  • Konwar, M., Das, S. K., Deshpande, S. M., Chakravarty, K., & Goswami, B. N. (2014). Microphysics of clouds and rain over the Western Ghat. Journal of Geophysical Research: Atmosphere,119, 6140–6159.

    Google Scholar 

  • Kumar, L. S., Lee, Y. H., Yeo, J. X., & Ong, J. T. (2011). Tropical rain classification and estimation of rain from Z-R (reflectivity-rain rate) relationships. Progress in Electromagnetics Research B,32, 107–127.

    Article  Google Scholar 

  • Leary, C. A., & Houze, R. A. (1979). The structure and evolution of convection in a tropical cloud cluster. Journal of the Atmospheric Science,36, 437–457.

    Article  Google Scholar 

  • Leon, D. C., French, J. R., Lasher-Trapp, S., Blyth, A. M., et al. (2016). The Convective Precipitation Experiment (COPE): Investigating the origins of heavy precipitation in the southwestern United Kingdom. Bulletin of the American Meteorological Society,97, 1003–1020.

    Article  Google Scholar 

  • Marshall, J. S., & Palmer, W. M. K. (1948). The distribution of raindrops with size. Journal of Meteorology, 5, 165–166.

    Article  Google Scholar 

  • Martner, B. E., Yuter, S. E., White, A. B., Matrosov, S. Y., Kingsmill, D. E., & Ralph, D. E. (2008). Raindrop size distributions and rain characteristics in California coastal rainfall for periods with and without a radar bright band. Journal of Hydrometeorology,9, 408–425.

    Article  Google Scholar 

  • METEK Micro Rain Radar. (2011). Physics Manual, Valid for MRR Service Version 6.0.0.2S.

  • Narayanan, S., Vishwanathan, G., & Mrudula, G. (2016). Possible development mechanisms of pre-monsoon thunderstorms over northeast and east India. In Proceedings SPIE 9882, Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VI, 98821U.

  • Peters, G., Fischer, B., Münster, H., Clemens, M., & Wagner, A. (2005). Profiles of raindrop size distributions as retrieved by micro rain radars. Journal of Applied Meteorology and Climatology,44, 1930–1949.

    Article  Google Scholar 

  • Pottapinjara, V., Girishkumar, M. S., Sivareddy, S., Ravichandran, M., & Murtugudde, R. (2015). Relation between the upper ocean heat content in the equatorial Atlantic during boreal spring and the Indian monsoon rainfall during June-September. International Journal of Climatology,36(6), 2469–2480.

    Article  Google Scholar 

  • Rai, D., & Pattnaik, S. (2019). Evaluation of WRF planetary boundary layer parameterization schemes for simulation of monsoon depressions over India. Meteorology and Atmospheric Physics, 131(5), 1529–1548.

    Article  Google Scholar 

  • Rajeevan, M., Bhate, J., & Jaswal, A. K. (2008). Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophysical Research Letters,35, 1–6.

    Google Scholar 

  • Rao, T. N., Rao, T. N., Mohan, K., & Raghavan, S. (2001). Classification of tropical precipitating systems and associated Z–R relationships. Journal of Geophysical Research: Atmosphere,106, 17699–17711.

    Article  Google Scholar 

  • Rao, N. N., Rao, V. B., Ramakrishna, S. S., & Rao, B. S. (2019). Moisture budget of the tropical cyclones formed over the Bay of Bengal: Role of soil moisture after landfall. Pure and Applied Geophysics,176, 441–461.

    Article  Google Scholar 

  • Sarkar, T., Das, S., & Maitra, A. (2015). Assessment of different raindrop size measuring techniques: Intercomparison of Doppler radar, impact and optical disdrometer. Atmospheric Research,160, 15–27.

    Article  Google Scholar 

  • Sikka, D. R. (1977). Some aspects of the life history, structure and movement of monsoon depressions. Pure and Applied Geophysics, 115, 1501–1529.

  • Sisodiya, A., Pattnaik, S., Baisya, H., Bhat, G. S., & Turner, A. G. (2019). Simulation of location specific severe thunderstorm events using high resolution land assimilation”. Dynamics of Atmospheres and Oceans. https://doi.org/10.1016/j.dynatmoce.2019.101098.

    Article  Google Scholar 

  • Thies CLIMA, (2007). Instructions for Use, Laser Precipitation Monitor 5.4110.xx.x00 V2.5x STD. Thies Technology Report.

  • Ulbrich, C. W., & Atlas, D. (2002). On the separation of tropical convective and stratiform rains. Journal of Applied Meteorology and Climatology,41, 188–195.

    Article  Google Scholar 

  • Wang, Z. (2018). What is the key features of convection leading up to tropical cyclone formation. Journal of the Atmospheric Sciences,75, 1609–1629. (Oxford Handbooks Online).

    Article  Google Scholar 

  • Wen, L., Zhao, K., Zhang, G., Liu, S., & Chen, G. (2017). Impact of instrument on estimated raindrops size distribution, radar parameters, and model microphysics during Mei-Yu season in East China. Journal of Atmospheric and Oceanic Technology,43(5), 1021–1037.

    Article  Google Scholar 

  • White, A. B., Neiman, P. J., Ralph, F. M., Kingsmill, D. E., Persson, P. O. G., & Olume, V. (2003). Coastal orographic rainfall processes observed by radar during the California land-falling jets experiment. Journal of Hydrometeorology,4, 264–282.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Indian Institute of Technology Bhubaneswar (grant no. A16ES09006) for providing research facilities and helpful assistance required for this purpose. Furthermore, our gratitude is extended to the funding agencies, namely the Ministry of Earth Sciences (MoES), India (RP-083), Department of Science and Technology (DST), India (RP-132), and Scientific and Engineering Board (SERB), India (RP-193), for their support to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Pattnaik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisodiya, A., Pattnaik, S. & Baisya, H. Characterization of Different Rainfall Types from Surface Observations Over a Tropical Location. Pure Appl. Geophys. 177, 1111–1123 (2020). https://doi.org/10.1007/s00024-019-02338-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02338-6

Keywords

Navigation