Skip to main content
Log in

Geophysical Investigation of the Geothermal Potential Under the Largest Volcanic Cover in Anatolia: Kars Plateau, NE Turkey

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this study, Curie-point depth (CPD), geothermal gradient, radiogenic heat production, and heat flow maps were constructed based on different thermal conductivity coefficients using magnetic anomaly data for the Kars Plateau, which has the largest volcanic cover in Turkey. The bottom depths of the magnetic crust in the research area were revealed by the CPD map for the first time in this investigation. There are two apparent magnetic anomaly trends in the study area: the first is the Horasan–Senkaya–Sarikamis–Selim–Arpacay trend in the NE–SW direction, and the other is the Hanak–Ardahan–Arpacay trend in the NW–SE direction. Two other prominent elongations extend into the Ardahan–Gole–Senkaya and Kars–Digor axes. All these trends represent mountain chains and/or stratovolcanoes in the region, and no anomalies are observed around the non-volcanic outcrops. Curie depths are shallow, up to 14 km between Horasan and Kagizman towns, and 12 km in the northwestern part of the study area. Gradient values can reach 50 °C km−1 in the northwestern sector, together with the high heat flows represented by the 150 Wm−1 K−1 contours. The deepest CPD region lies between Gole and Susuz towns, where the geothermal gradient decreases to 27 °C km−1. Heat flows decrease 60 Wm−1 K−1 in the same area. An apparent gap around the Kars Plateau was observed in previous regional heat flow maps of Turkey by other authors (who used the bottom hole temperatures of boreholes and hot springs temperatures). This gap has been accurately filled from the results of this study, and geothermal exploration areas and the geothermal potential of the Kars Plateau have thus been determined for future exploration activity on the basis of the tectonic elements and earthquake data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

modified from Aydemir (2010, 2011a, 2011b)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aboud, E., Salem, A., & Mekkawi, M. (2011). Curie depth map for Sinai Peninsula, Egypt deduced from the analysis of magnetic data. Tectonophysics,506, 46–54.

    Google Scholar 

  • Akkus, I., Akilli, H., Ceyhan, S., Dilemre, A., & Tekin, Z. (2005). Turkiye Jeotermal Kaynaklar Envanteri. Ankara: Public of MTA.

    Google Scholar 

  • Angus, D. A., Wilson, D. C., Sandvol, E., & Ni, J. F. (2006). Lithospheric structure of the Arabian and Eurasion collision zone in eastern Trukey from S-wave receiver functions. Geophysical Journal International,166, 1335–1346.

    Google Scholar 

  • Artemieva, I. M., & Money, W. D. (2001). Thermal thickness and evolution of Precambrian lithosphere. Journal of Geophysical Research,106, 16387–16414.

    Google Scholar 

  • Ates, A., Bilim, F., & Buyuksarac, A. (2005). Curie point depth investigation of Central Anatolia, Turkey. Pure and Applied Geophysics,162, 357–371.

    Google Scholar 

  • Ates, A., Bilim, F., Buyuksarac, A., Aydemir, A., Bektas, O., & Aslan, Y. (2012). Crustal structure of Turkey from aeromagnetic, gravity and deep seismic reflection data. Surveys in Geophysics,33, 869–885.

    Google Scholar 

  • Aydemir, A. (2010). Potential shale gas resources in Turkey: Evaluating geological prospects, geochemical properties, surface access and infrastructure. Global Shale Gas Summit-2010, July 19–20, Warsaw, Poland.

  • Aydemir, A. (2011a). New exploration activities, opportunities and potential for unconventional gas in Turkey. European Unconventional Gas Summit-2011, 31 Jan.–2 Feb., 2011, Paris, France.

  • Aydemir, A. (2011b). Potential unconventional formations in different basins in Turkey. 10th Turkish international oil and gas conference (TUROGE-2011), 16–17 March, 2011, Ankara, Turkey.

  • Aydemir, A., Bilim, F., Cifci, G., & Okay, S. (2018). Modeling of the Foca-Uzunada magnetic anomaly and thermal structure in the gulf of Izmir, western Turkey. Journal of Asian Earth Sciences,156, 288–301.

    Google Scholar 

  • Aydin, I., Karat, H. I., & Kocak, A. (2005). Curie-point depth map of Turkey. Geophysical Journal International,162, 633–640.

    Google Scholar 

  • Baldwin, R. T., & Langel, R. (1993). Tables and maps of the DGRF 1985 and IGRF 1990. IAGA Bulletin,54, 158.

    Google Scholar 

  • Bektas, O. (2013). Thermal structure of the crust in Inner East Anatolia from aeromagnetic and gravity data. Physics of the Earth and Planetary Interiors,221, 27–37.

    Google Scholar 

  • Bhattacharyya, B. K., & Leu, L. K. (1975). Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures. Geophysics,40, 993–1013.

    Google Scholar 

  • Bilim, F. (2007). Investigation into the tectonic lineaments and thermal structure of Kutahya–Denizli region, Western Anatolia, from using aeromagnetic, gravity and seismological data. Physics of the Earth and Planetary Interiors,165, 135–146.

    Google Scholar 

  • Bilim, F. (2011). Investigation of the Galatian volcanic complex in the northern central Turkey using potential field data. Physics of the Earth and Planetary Interiors,185, 36–43.

    Google Scholar 

  • Bilim, F., Akay, T., Aydemir, A., & Kosaroglu, S. (2016). Curie point depth, heat flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics,60, 44–57.

    Google Scholar 

  • Bilim, F., & Ates, A. (2003). Analytic Signal inferred from reduced to the pole data. Journal of the Balkan Geophysical Society,6, 66–74.

    Google Scholar 

  • Bilim, F., & Ates, A. (2005). Analitik Sinyal yontemlerinin manyetik model verileri uzerinde karsilastirilmasi. İstanbul Yerbilimleri Dergisi,18, 151–162. (in Turkish with English Abstract).

    Google Scholar 

  • Bilim, F., Aydemir, A., & Ates, A. (2017a). Tectonics and thermal structure in the Gulf of Iskenderun (Southern Turkey) from the aeromagnetic, borehole and seismic data. Geothermics,70, 206–221.

    Google Scholar 

  • Bilim, F., Kosaroglu, S., Aydemir, A., & Buyuksarac, A. (2017b). Thermal investigation in the Cappadocia Region, Central Anatolia-Turkey, analyzing Curie point depth, geothermal gradient and heat flow maps from the aeromagnetic data. Pure and Applied Geophysics,174, 4445–4458.

    Google Scholar 

  • Bilim, F., Aydemir, A., Kosaroglu, S., & Bektas, O. (2018). Effects of the Karacadag volcanic complex on the thermal structure and geothermal potential of southeast Anatolia. Bulletin of Volcanology,2018, 80–92.

    Google Scholar 

  • Bingol, E. (1989). Geological map of Turkey (Scale: 1/2,000,000). Ankara: General Directorate of Mineral Research and Exploration (MTA).

    Google Scholar 

  • Blakely, R. (1996). Potential theory in gravity and magnetic applications. New York: Cambridge University Press.

    Google Scholar 

  • Boray, A. (1975). Bitlis dolayinin yapisi ve metamorfizmasi. Bulletin of TJK,18, 81–84. (in Turkish with English Abstract).

    Google Scholar 

  • Caglayan, M. A., Inal, R. N., Sengun, M., & Yurtsever, A. 1983. Structural setting of Bitlis Massif. In O. Tekeli, C. Goncuoglu (Eds.), Geology of the Taurus belt, International Symposium, pp 245–254.

  • Demirtasli, E., & Pisoni, C. (1965). Ahlat-Adilcevaz bolgesinin jeolojisi (Van Golu kuzeyi). Bulletin of MTA,64, 22–36. (in Turkish with English Abstract).

    Google Scholar 

  • Di Pippo, R. (2008). Geothermal power plants: Principals, applications, case studies and environmental impact (p. 493). Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Dolmaz, M. N., Hisarli, Z. M., Ustaomer, T., & Orbay, N. (2005). Curie point depths based on spectrum analysis of the aeromagnetic data, west Anatolian extensional province, Turkey. Pure and Applied Geophysics,162, 571–590.

    Google Scholar 

  • Duru, O., & Keskin, M. (2014). Kars volkanik Plato’sunun Cildir (Ardahan ili) kuzeyindeki bolumunun volkanostratigrafisi, petrografisi ve magmatik ayrimlasma surecleri. Istanbul Yerbilimleri Dergisi,27, 17–38. (in Turkish with English Abstract).

    Google Scholar 

  • Ercan, A., Genc, T., & Duygu, M. A. (1987). Kalin bazalt ortusu altinin yerelektrik yontemle calisilmasi: Bati Kafkasya. Jeofizik,1, 45–75. (in Turkish with English Abstract).

    Google Scholar 

  • Faccena, C., Becker, T. W., Jolivet, L., & Keskin, M. (2013). Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth and Planetary Science Letters,375, 254–269.

    Google Scholar 

  • Goncuoglu, M.C., Turhan, N. (1983). Geology of the Bitlis metamorphic belt. In O. Tekeli, C. Goncuoglu (Eds.), International Symposium on the Geology of the Taurus Belt, pp. 237–244.

  • Hisarli, Z. M., Cinku, M. C., Ustaomer, T., Keskin, M., & Orbay, N. (2016). Neotectonic deformation in the Eurasia-Arabia collision zone, the East Anatolian Plateau, E Turkey: Evidence from palaeomagnetic study of Neogene-Quaternary volcanic rocks. International Journal of Earth Sciences,105, 139–165.

    Google Scholar 

  • Hsieh, H. H., Chen, C. H., Lin, P. Y., & Yen, H. Y. (2014). Curie point depth from spectral analysis of magnetic data in Taiwan. Journal of Asian Earth Sciences,90, 26–33.

    Google Scholar 

  • Innocenti, F., Pasguare, G., Radicati di Brozola, F., & Villari, L. (1982). Tertiary and Ouaternary volcanism of the Erzurum-Kars area (Eastern Turkey): Geochronological data and geodynamic evolution. Journal of Volcanology and Geothermal Research,13, 223–240.

    Google Scholar 

  • Jaupart, C. (1986). On the average amount and vertical distribution of radioactivity in the continental crust. In J. Burrus (Ed.), Thermal modeling in sedimentary basins (pp. 33–47). Paris: Editions Technip.

  • Keskin, M. (1994). Genesis of collision-related volcanism on the Erzurum-Kars Plateau, Northeastern Turkey. PhD. Thesis. Durham University, Department of Geological Sciences, UK.

  • Keskin, M. (1998). Erzurum-Kars platosunun carpisma kokenli volkanizmasinin volkanostratigrafisi ve yeni K/Ar yas bulgulari isiginda evrimi, kuzeydogu Anadolu. Bulletin of MTA,120, 135–157. (in Turkish with English Abstract).

    Google Scholar 

  • Keskin, M. (2003). Magma generation by slap steepening and break-off beneath a subduction–accretion complex: An alternative model for collision-related volcanism in eastern Anatolia, Turkey. Geophysical Research Letters,30(24), 8046.

    Google Scholar 

  • Keskin, M. (2014). Geodynamic and magmatic evolution of the Eastern Anatolian–Arabian Collision Zone, Turkey. EGU General Assembly, 27 April–02 May, 2014, Vienna, Austria.

  • Keskin, M., Pearce, J. A., & Mitchell, J. G. (1998). Volcano-stratigraphy and geochemistry of collision-related volcanism on the Erzurum-Kars Plateau, northeastern Turkey. Journal of Volcanology and Geothermal Research,85, 355–404.

    Google Scholar 

  • Ketin, I. (1977). Van golu ile Iran siniri arasindaki bolgede yapilan jeoloji gozlemlerinin sonuclari hakkinda kisa bir aciklama. Bulletin of TJK,20, 79–85. (in Turkish with English Abstract).

    Google Scholar 

  • Lachenbruch, A. H. (1970). Crustal temperature and heat production: Implication of the linear heat flow relationship. Journal of Geophysical Research,75, 3291–3300.

    Google Scholar 

  • MacLeod, I. N., Jones, K., & Dai, T. F. (1993). 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes. Exploration Geophysics,24, 679–688.

    Google Scholar 

  • Maden, N. (2013). Geothermal structure of the eastern Black Sea basin and the eastern Pontides orogenic belt: Implications for subduction polarity of Tethys oceanic lithosphere. Geoscience Frontiers,4, 389–398.

    Google Scholar 

  • Manea, M., & Manea, V. C. (2011). Curie point depth estimates and correlation with subduction in Mexico. Pure and Applied Geophysics,168, 1489–1499.

    Google Scholar 

  • Mauss, S., Gordon, D., & Fairhead, D. J. (1997). Curie temperature depth estimation using a self-similar magnetization model. Geophysical Journal International,129, 163–168.

    Google Scholar 

  • Nabi, S. H. A. E. (2012). Curie point depth beneat the Barramiya-Red Sea coast area estimated from spectral analysis of aeromagnetic data. Journal of Asian Earth Sciences,43, 254–266.

    Google Scholar 

  • Nabighian, M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics,37, 507–517.

    Google Scholar 

  • Nwobgo, P. O. (1998). Spectral prediction of magnetic source depths from simple numerical models. Computers and Geosciences,24, 847–852.

    Google Scholar 

  • Obande, G. E., Lawal, K. M., & Ahmed, L. A. (2014). Spectral analysis of aeromagnetic data for geothermal investigation of Wikki Warm Spring, North-east Nigeria. Geothermics,50, 85–90.

    Google Scholar 

  • Okubo, Y., Graf, R. J., Hansen, R. O., Ogawa, K., & Tsu, H. (1985). Cruie point depths of the Island of Kyushu and surrounding areas, Japan. Geophysics,50, 481–494.

    Google Scholar 

  • Okubo, Y., Matsushima, J., & Correia, A. (2003). Magnetic spectral analysis in Portugal and its adjacent seas. Physics and Chemistry of the Earth,28, 511–519.

    Google Scholar 

  • Okubo, Y., Tsu, H., & Ogawa, K. (1989). Estimation of Curie point temperature and geothermal structure of island arcs of Japan. Tectonophysics,159, 279–290.

    Google Scholar 

  • Ortiz-Aleman, C., & Urrutia-Fucugauchi, J. (2010). Aeromagnetic anomaly modeling of central zone structure and magnetic sources in the Chicxulub crater. Physics of the Earth and Planetary Interiors,179, 127–138.

    Google Scholar 

  • Oruc, B., Gomez-Ortiz, D., & Petit, C. (2017). Lithospheric flexural strength and effective elastic thicknesses of the Eastern Anatolia (Turkey) and surrounding region. Journal of Asian Earth Sciences,150, 1–13.

    Google Scholar 

  • Pamukcu, O. A., Akcig, Z., Demirbas, S., & Zor, E. (2007). Investigation of crustal thickness in eastern Anatolia using gravity, magnetic, and topographic data. Pure and Applied Geophysics,164, 2345–2358.

    Google Scholar 

  • Perincek, D. (1980). Bitlis metamorfitlerinde volkanitli Triyas. Bulletin of TJK,23, 201–211. (in Turkish with English Abstract).

    Google Scholar 

  • Perincek, D., & Ozkaya, I. S. (1981). Arabistan levhasi kuzey kenarinin tektonik evrimi. Yerbilimleri,8, 91–101. (in Turkish with English Abstract).

    Google Scholar 

  • Piper, J. D. A., Tatar, O., Gursoy, H., Kocbulut, F., & Mesci, B. L. (2006). Paleomagnetic analysis of Neotectonic deformation in the Anatolian accretionary collage, Turkey. In Y. Dilek & S. Pavlides (Eds.), Postcollisional tectonics and magnetism in the Mediterranean Region and Asia (pp. 409, 417–409 440). London: Geological Society, London, Special Publications.

    Google Scholar 

  • Saibi, H., Nishijima, J., Ehara, S., & Aboud, E. (2006). Integrated gradient interpretation techniques for 2-D and 3-D gravity data interpretation. Earth Planets Space,58, 815–821.

    Google Scholar 

  • Salem, A., Ravat, D., Gamey, T. J., & Ushijima, K. (2002). Analytic signal approach and its applicability in environmental magnetic investigations. Journal of Applied Geophysics,49, 231–244.

    Google Scholar 

  • Saroglu, F., Emre, O., & Kuscu, I. (1992). The East Anatolian Fault Zone of Turkey. Annales Tectonicae,6, 99–125.

    Google Scholar 

  • Sengor, A. M. C. (1979). Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature,279, 590–593.

    Google Scholar 

  • Sengor, A. M. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics,75, 181–241.

    Google Scholar 

  • Shuey, R. T., Schellinger, D. K., Tripp, A. C., & Alley, L. B. (1977). Curie depth determination from aeromagnetic spectra. Geophysical Journal of the Royal Astronomical Society,50, 75–101.

    Google Scholar 

  • Spector, A., & Grant, F. S. (1970). Statistical models for interpretation aeromagnetic data. Geophysics,35, 293–302.

    Google Scholar 

  • Springer, M. (1999). Interpretation of heat-flow density in the Central Andes. Tectonophysics,306, 377–395.

    Google Scholar 

  • Stampolidis, A., & Tsokas, G. N. (2002). Curie point depths of Macedonia and Thrace, N. Greece. Pure and Applied Geophysics,159, 2659–2671.

    Google Scholar 

  • Tanaka, A., Okubo, Y., & Matsubayashi, O. (1999). Curie point depth based on spectrum analysis of the magnetic anomaly data in east and southeast Asia. Tectonophysics,306, 461–470.

    Google Scholar 

  • Tekin, T., Sahinturk, O., Captug, A. 2004. Dogu Anadolu Basenleri hidrokarbon degerlendirmesi. TPAO Report No: 4564.

  • Tsokas, G. N., Hansen, R. O., & Fytikas, M. (1998). Curie point depth of the island of Crete (Greece). Pure and Applied Geophysics,152, 747–757.

    Google Scholar 

  • Turcotte, D. L., & Schubert, G. (2002). Geodynamics: Applications of continuum physics to geological problems. New York: Wiley.

    Google Scholar 

  • Ugur, M.S. 2000. Kagizman (Kars)-Tuzluca (Igdir) civari jeolojisi ve petrol olanaklari. TPAO Report No: 4137.

  • Yilmaz, Y., Dilek, Y., & Isik, H. (1981). Gevas (Van) ofiyolitinin jeolojisi ve sinkinematik bir makaslama zonu. Bulletin of TJK,24, 37–44.

    Google Scholar 

  • Zor, E., Sandvol, E., Gurbuz, C., Turkeli, N., Seber, D., & Barazangi, M. (2003). The crustal structure of the East Anatolian plateau (Turkey) from receiver functions”. Geophysical Research Letters,30, 8044.

    Google Scholar 

Download references

Acknowledgements

This research was awarded and supported by the Turkish Scientific Research Council (TUBITAK). The authors are grateful to TUBITAK for support of the research project (Project Code: 116Y369). All potential field data were purchased from the General Directorate of Mining Research and Exploration (MTA) with the support of TUBITAK. This work constitutes a partial section of the M. Sc. thesis undertaken by Birgul AVCI at the Cumhuriyet University-Sivas. The authors are grateful to anonymous reviewers and Dr. Mikhailov, the handling editor, for their constructive critiques and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Aydemir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydemir, A., Bilim, F., Avci, B. et al. Geophysical Investigation of the Geothermal Potential Under the Largest Volcanic Cover in Anatolia: Kars Plateau, NE Turkey. Pure Appl. Geophys. 177, 919–939 (2020). https://doi.org/10.1007/s00024-019-02317-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02317-x

Keywords

Navigation