Skip to main content
Log in

Preconditioned Inversion of 3D Borehole to Surface Electromagnetic for Reservoir Exploration

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The accurate interpretation of three-dimensional borehole to surface electromagnetic (BSEM) data has two challenging problems: the accuracy of forward modeling and the efficiency of the inversion process. In this paper, we used the least squares method to develop a preconditioned algorithm combined parametric inversion and resistivity image to overcome these difficulties for reservoir exploration. To improve accuracy, we suggest using the full integral equation (IE) solution for forward modeling. Taking into account that the IE method requires the mesh discretization of an anomalous body only, the parametric inversion based on the IE method would provide an preconditioned inverse domain consisting of the complex structure via a few parameters. Based on the predicted preconditioned inverse domain, the conventional Green’s functions can be recomputed only once and kept unchanged in iterative inversion process of resistivity image, which increases significantly the size of the inverse domain and the computation for IE modeling. The resistivity of background and complex structures embedded in layered stratum are considered to simulate the practical application in preconditioned inversion. Synthetic examples with noise studies are conducted to demonstrate that the preconditioned algorithm can be applied quickly and effectively in a complex structure inversion for BSEM in reservoir exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Cao, H., Mao, L., & Wang, X. (2015). Numerical modeling of borehole-surface electromagnetic responses with 3-D finite difference method and comparison with physical simulations. Studia Geophysica et Geodaetica,59(1), 83–96.

    Article  Google Scholar 

  • Daniels, J. J. (1983). Hole-to-surface resistivity measurements. Geophysics,48, 87–97.

    Article  Google Scholar 

  • He, Z. X., Liu, X. J., Qiu, W. T., & Zhou, H. (2005). Mapping reservoir boundary by borehole-surface TFEM: Two case studies. The Leading Edge,24, 896–900.

    Article  Google Scholar 

  • Hohmann, G. W. (1975). Three-dimensional induced polarization and EM modeling. Geophysics,40, 309–324.

    Article  Google Scholar 

  • Hursan, G., & Zhdanov, M. S. (2002). Contraction integral equation method in three-dimensional electromagnetic modeling. Radio Science,37(6), 1089–1102.

    Article  Google Scholar 

  • Le Masne, D., & Poirmeur, C. (1988). Three-dimensional model results for an electrical hole-to-surface method: Application to the interpretation of a field survey. Geophysics,53, 85–103.

    Article  Google Scholar 

  • Li, J. H., He, Z. X., & Xu, Y. X. (2017). Three-dimensional numerical modeling of surface-to-borehole electromagnetic field for monitoring reservoir. Applied Geophysics,14(4), 559–569.

    Google Scholar 

  • Li, J. H., Jia, Y., Liu, Q. H., & He, Z. X. (2014). A fast solver for vertical electromagnetic profiles of surface to borehole electromagnetic method (SBEM). In SEG Expanded Abstract (pp. 628–632).

  • Li, J. H., & Liu, Q. H. (2016). Fast frequency-domain forward and inverse methods for acoustic scattering from inhomogeneous objects in layered media. Journal of Computational Acoustics,24(3), 165008–165017.

    Google Scholar 

  • Li, J. H., Liu, Q. H., & Song, L. P. (2016). Multiple frequency contrast source inversion method for vertical electromagnetic profiling: 2D simulation results and analyses. Pure and Applied Geophysics,173, 607–621.

    Article  Google Scholar 

  • Liu, X., Shi, Y., & Zhao, G. (2018). Evaluation of fractured carbonate reservoirs and igneous reservoirs by borehole-to-surface electromagnetic method. In 80th EAGE Conference and Exhibition (pp. 1–4).

  • Marsala, A. F., Al-Buali, M., Ali, Z., Mark, S. X., He, Z. X., Tang, B. Y., Zhao, G., & He, T. Z. (2011). First borehole to surface electromagnetic survey in KSA: Reservoir mapping and monitoring at a new scale. Society of Petroleum Engineers.

  • Marsala, A. F., Lyngra, S., Widiaia, D. R., Laota, A. S., Al-buali, M., Aramco, S., He, Z. X., Zhao, G., Xu, J. H., & Cao, Y. (2013). Fluid distribution inter-well mapping in multiple reservoirs by innovative borehole to surface electromagnetic: Survey design and field acquisition. In International Petroleum Technology Conference.

  • Marsala, A. F, Zhdanov, M. S., & Endo, M. (2014). 3D inversion of borehole to surface electromagnetic data in a multiple reservoirs survey. In SEG Technical Program Expanded Abstracts (pp. 2600–2604).

  • Ruan, B. Y. (2001). A generation method of the partial derivatives of the apparent resistivity with respect to the model resistivity parameter. Geology and Prospecting,37(6), 39–41.

    Google Scholar 

  • Wang, Z., He, Z., & Liu, G. (2015). Well-hole electromagnetic exploration techniques and its research progress. Society of Exploration Geophysicists and Chinese Geophysical Society (pp. 412–415).

  • Wang, Z. G., He, Z. X., & Liu, H. Y. (2006). Three-dimensional inversion of borehole to surface electrical data based on quasi-analytical approximation. Applied Geophysics,3(3), 141–147.

    Article  Google Scholar 

  • Wang, Z. G., He, Z. X., & Wei, W. B. (2007a). 3D modeling and Born approximation inversion for the borehole surface electromagnetic method. Applied Geophysics,4(2), 84–88.

    Article  Google Scholar 

  • Wang, Z. G., He, Z. X., Wei, W. B., Liu, X. J., & Tang, B. Y. (2007b). 3-D quasi-analytic approximate inversion of borehole- to -surface electric data. Oil Geophysical Prospecting,42(2), 220–225.

    Google Scholar 

  • Wannamaker, P. E., Hohmann, G. W., & San Filipo, W. A. (1984). Electromagnetic modeling of three dimensional bodies in layered earths using integral equations. Geophysics,49, 60–74.

    Article  Google Scholar 

  • Weidelt, P. (1975). EM induction in three-dimensional structures. Geophysics,41, 85–109.

    Google Scholar 

  • Xiong, Z. (1992). Electromagnetic modeling of three dimensional structures by the method of system iterations using integral equations. Geophysics,57, 1556–1561.

    Article  Google Scholar 

  • Zhan, Q., Ren, Q., Sun, Q., Chen, H., & Liu, Q. H. (2017). Isotropic Riemann solver for a nonconformal discontinuous Galerkin pseudospectral time-domain algorithm. IEEE Transactions on Geoscience and Remote Sensing,55, 1254–1261.

    Article  Google Scholar 

  • Zhan, Q., Zhuang, M., Fang, Y., Hu, Y., Mao, Y., Huang, W. F., et al. (2019a). Full-anisotropic poroelastic wave modeling: A discontinuous Galerkin algorithm with a generalized wave impedance. Computer Methods in Applied Mechanics and Engineering,346, 288–311.

    Article  Google Scholar 

  • Zhan, Q., Zhuang, M., Fang, Y., Liu, J. G., & Liu, Q. H. (2019b). Green’s function for anisotropic dispersive poroelastic media based on the Radon transform and eigenvector diagonalization. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,475, 20180610.

    Article  Google Scholar 

  • Zhdanov, M. S., & Fang, S. (1996). Three-dimensional quasi-linear electromagnetic inversion. Radio Science,31(4), 741–754.

    Article  Google Scholar 

  • Zhdanov, M. S., & Hursan, G. (2000). 3D electromagnetic inversion based on quasi-analytical approximation. Inverse Problems,16, 1297–1322.

    Article  Google Scholar 

  • Zhdanov, M. S., Lee, S. K., & Yoshioka, K. (2006). Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity. Geophysics,71(6), G333–G345.

    Article  Google Scholar 

  • Zhdanov, M. S., & Tartaras, E. (2002). Three-dimensional inversion of multitransmitter electromagnetic data based on the localized quasi-linear approximation. Geophysical Journal International,148, 506–519.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Nature Science Foundation under Grant 41604097, Natural Science Fund of Guangxi under Grant 2016GXNSFBA380195, and China Postdoctoral Science Foundation under Grant 2016M592611.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghe Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Some Values of Partial Derivatives \(\frac{{\partial u_{{_{j} }} }}{{\partial \sigma_{i} }}\)

Appendix: Some Values of Partial Derivatives \(\frac{{\partial u_{{_{j} }} }}{{\partial \sigma_{i} }}\)

In the framework of IE method, taking into account that the model parameterization is to divide a model into blocks of unknown constant conduction, the Eq. (17) can also be written as

$$\frac{{\partial E(r_{{_{j} }}^{'} )}}{{\partial \sigma_{i} }} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{E}^{i} \cdot E^{a} (r_{i}^{{}} ) + \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{E} \cdot \Delta \sigma \cdot \frac{{\partial E^{a} (r)}}{{\partial \sigma_{i} }}$$
(21)

where

$$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{E}^{i} = \left[ {\begin{array}{*{20}c} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{x}^{1i} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{y}^{1i} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{z}^{1i} } \\ \vdots & \vdots & \vdots \\ {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{x}^{Mi} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{y}^{Mi} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{z}^{Mi} } \\ \end{array} } \right],\;E^{a} (r_{i} ) = \left[ {\begin{array}{*{20}c} {E_{x}^{a} (r_{i} )} \\ {E_{y}^{a} (r_{i} )} \\ {E_{z}^{a} (r_{i} )} \\ \end{array} } \right]$$
$$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{E} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{x}^{11} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{y}^{11} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{z}^{11} } \\ \end{array} } & \ldots & \ldots & {\begin{array}{*{20}c} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{x}^{1N} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{y}^{1N} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{z}^{1N} } \\ \end{array} } \\ \vdots & \cdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & \vdots \\ {\begin{array}{*{20}c} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{x}^{M1} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{y}^{M1} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{z}^{M1} } \\ \end{array} } & \cdots & \cdots & {\begin{array}{*{20}c} {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{x}^{MN} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{y}^{MN} } & {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{z}^{MN} } \\ \end{array} } \\ \end{array} } \right]$$
$$\frac{{\partial E^{a} (r)}}{{\partial \sigma_{i} }} = \left[ {\begin{array}{*{20}c} {\frac{{\partial E_{x}^{a} (r_{1}^{{}} )}}{{\partial \sigma_{i} }}} & {\frac{{\partial E_{y}^{a} (r_{1}^{{}} )}}{{\partial \sigma_{i} }}} & {\frac{{\partial E_{z}^{a} (r_{1}^{{}} )}}{{\partial \sigma_{i} }}} & \cdots & {\frac{{\partial E_{x}^{a} (r_{N}^{{}} )}}{{\partial \sigma_{i} }}} & {\frac{{\partial E_{y}^{a} (r_{N}^{{}} )}}{{\partial \sigma_{i} }}} & {\frac{{\partial E_{z}^{a} (r_{N}^{{}} )}}{{\partial \sigma_{i} }}} \\ \end{array} } \right]^{T}$$

The Eq. (19) can be expressed as

$$\frac{{\partial E^{a} (r)}}{{\partial \sigma_{i} }} = - M^{ - 1} \cdot \frac{\partial M}{{\partial \sigma_{i} }} \cdot E^{a} (r)$$
(22)

where

$$M = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\Delta \sigma_{1} G_{xx}^{11} - 1} & {\Delta \sigma_{1} G_{xy}^{11} } & {\Delta \sigma_{1} G_{xz}^{11} } \\ {\Delta \sigma_{1} G_{yx}^{11} } & {\Delta \sigma_{1} G_{yy}^{11} - 1} & {\Delta \sigma_{1} G_{yz}^{11} } \\ {\Delta \sigma_{1} G_{zx}^{11} } & {\Delta \sigma_{1} G_{zy}^{11} } & {\Delta \sigma_{1} G_{zz}^{11} - 1} \\ \end{array} } & \cdots & {\begin{array}{*{20}c} {\Delta \sigma_{N} G_{xx}^{1N} } & {\Delta \sigma_{N} G_{xy}^{1N} } & {\Delta \sigma_{N} G_{xz}^{1N} } \\ {\Delta \sigma_{N} G_{yx}^{1N} } & {\Delta \sigma_{N} G_{yy}^{1N} } & {\Delta \sigma_{N} G_{yz}^{1N} } \\ {\Delta \sigma_{N} G_{zx}^{1N} } & {\Delta \sigma_{N} G_{zy}^{1N} } & {\Delta \sigma_{N} G_{zz}^{1N} } \\ \end{array} } \\ \vdots & \ddots & \vdots \\ {\begin{array}{*{20}c} {\Delta \sigma_{1} G_{xx}^{N1} } & {\Delta \sigma_{1} G_{xy}^{N1} } & {\Delta \sigma_{1} G_{xz}^{N1} } \\ {\Delta \sigma_{1} G_{yx}^{N1} } & {\Delta \sigma_{1} G_{yy}^{N1} } & {\Delta \sigma_{1} G_{yz}^{N1} } \\ {\Delta \sigma_{1} G_{zx}^{N1} } & {\Delta \sigma_{1} G_{zy}^{N1} } & {\Delta \sigma_{1} G_{zz}^{N1} } \\ \end{array} } & \cdots & {\begin{array}{*{20}c} {\Delta \sigma_{N} G_{xx}^{NN} - 1} & {\Delta \sigma_{N} G_{xy}^{NN} } & {\Delta \sigma_{N} G_{xz}^{NN} } \\ {\Delta \sigma_{N} G_{yx}^{NN} } & {\Delta \sigma_{N} G_{yy}^{NN} - 1} & {\Delta \sigma_{N} G_{yz}^{NN} } \\ {\Delta \sigma_{N} G_{zx}^{NN} } & {\Delta \sigma_{N} G_{zy}^{NN} } & {\Delta \sigma_{N} G_{zz}^{NN} - 1} \\ \end{array} } \\ \end{array} } \right]$$
$$E^{a} (r) = \left[ {\begin{array}{*{20}c} {E_{x}^{a} (r_{1}^{{}} )} & {E_{y}^{a} (r_{1}^{{}} )} & {E_{z}^{a} (r_{1}^{{}} )} & \cdots & {E_{x}^{a} (r_{N}^{{}} )} & {E_{y}^{a} (r_{N}^{{}} )} & {E_{z}^{a} (r_{N}^{{}} )} \\ \end{array} } \right]^{T}$$

where \(E_{x}^{a} (r_{i}^{{}} )\), \(E_{y}^{a} (r_{i}^{{}} )\) and \(E_{z}^{a} (r_{i}^{{}} )\) are the three electrical field components of i th anomalous cell, which can be computed by solving the Eq. (3), the ‘T’ denotes the transposition of matrix, the \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{x}^{{}}\), \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{y}^{{}}\) and \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{G}_{z}^{{}}\) are the three components of the Green function correspond to receivers, and the \(G_{xx}^{{}}\), \(G_{xy}^{{}}\) and \(G_{xz}^{{}}\) are the components of the Green function correspond to the receivers inside the anomalous body.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., He, Z. & Feng, N. Preconditioned Inversion of 3D Borehole to Surface Electromagnetic for Reservoir Exploration. Pure Appl. Geophys. 176, 5349–5362 (2019). https://doi.org/10.1007/s00024-019-02285-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02285-2

Keywords

Navigation