Skip to main content
Log in

Low-Wave-Velocity and High-Electrical-Conductivity Layer of Serpentine: A Compilation

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Serpentine is formed by hydrothermal metasomatism and may penetrate into the deep crust or mantle of the Earth. It is considered to be the water resource of the mantle owing to its high water content and high-temperature decomposition (600–900 °C). In some geological settings, it has low wave velocity (lower than that of the surrounding rocks) and high electrical conductivity (higher than that of the surrounding rocks), which are the universal physical and geological properties of serpentine found across continents on Earth. Studying the properties of this layer, in particular the wave velocity and electrical conductivity, contributes to a more in-depth understanding of the mid-lower crust or mantle of the Earth. It is also helpful for exploring the mechanism of seismicity owing to the relationship of this layer with the earthquake center location. In subduction zones, the stability of serpentine is a factor affecting seismicity. In this study, the wave velocity and electrical conductivity data for serpentine, together with temperature and pressure, have been collated from previous studies. Some of these studies provide more comprehensive results and others provide new conclusions. Overall, the findings showed that a low-wave-velocity and high-electrical-conductivity layer can be found in serpentine under suitable geological settings. Details of the driving mechanism behind seismicity in subduction zones are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abers, G. A., Nakajima, J., Van Keken, P. E., Kita, D., & Hacker, B. R. (2013). Thermal-petrological controls on the location of earthquakes within subducting plates. Earth and Planetary Science Letters,369, 178–187.

    Google Scholar 

  • Arcay, D., Tric, E., & Doin, M. P. (2005). Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics. Physics of the Earth and Planetary Interiors,149, 133–153.

    Google Scholar 

  • Auzende, A. L., Pellenq, R. J. M., Devouard, B., Baronnet, A., & Grauby, E. O. (2006). Atomistic calculations of structural and elastic properties of serpentine minerals: The case of lizardite. Physics and Chemistry of Minerals,33, 266–275.

    Google Scholar 

  • Bezacier, L., Reynard, B., Bass, J. D., Sanchez-Valle, C., & Moortele, B. V. (2010). Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth and Planetary Science Letters,289, 198–208.

    Google Scholar 

  • Bezacier, L., Reynard, B., Cardon, H., Montagnac, G., & Bass, J. D. (2013). High-pressure elasticity of serpentine and seismic properties of the hydrated mantle wedge. Journal of Geophysical Research: Solid Earth,118, 527–535.

    Google Scholar 

  • Bostock, M. G., Hyndman, R. D., Rondenay, S., & Peacock, S. M. (2002). An inverted continental Moho and serpentinization of the forearc mantle. Nature,417, 536–538.

    Google Scholar 

  • Bourgois, J., Lagabrielle, Y., Martin, H., Dyment, J., Frutos, J., & Cisternas, M. E. (2016). A review on forearc ophiolite obduction, adakite-like generation, and slab window development at the Chile triple junction area: Uniformitarian framework for spreading-ridge subduction. Pure and Applied Geophysics,173, 3217–3246.

    Google Scholar 

  • Cannat, M., Fontaine, F., & Escartin, J. (2010). Serpentinization at slow-spreading ridges: Extent and associated hydrogen and methane fluxes at slow spreading ridges. In P. A. Rona, C. W. Devey, J. Dyment, & J. Murton (Eds.), Diversity of hydrothermal systems on slow spreading ocean ridges, AGU geophysical monograph, ridges (Vol. 188, pp. 241–264). Washington DC: American Geophysical Union.

    Google Scholar 

  • Cannat, M., Mevel, C., Maia, M., Deplus, C., Durand, C., Gente, P., et al. (1995). Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24° N). Geology,23, 49–52.

    Google Scholar 

  • Carlson, R. L. (2001). The abundance of ultramafic rocks in Atlantic Ocean crust. Geophysical Journal International,144, 37–48.

    Google Scholar 

  • Christensen, N. I. (1989). Reflectivity and seismic properties of the deep continental crust. Journal of Geophysical Research,94, 17795–17804.

    Google Scholar 

  • Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100(B6), 9761–9788.

    Google Scholar 

  • Deschamps, F., Godard, M., Guillot, S., & Hattori, K. (2013). Geochemistry of subduction zone serpentinites: A review. Lithos,178, 96–127.

    Google Scholar 

  • Deseta, N., Ashwal, L. D., & Andersen, T. B. (2014). Initiating intermediate-depth earthquakes: Insights from a HP–LT ophiolite from Corsica. Lithos,206, 127–146.

    Google Scholar 

  • Dewandel, B., Boudier, F., Kern, H., Warsi, W., & Mainprice, D. (2003). Seismic wave velocity and anisotropy of serpentinized peridotite in the Oman ophiolite. Tectonophysics,370, 77–94.

    Google Scholar 

  • Dobson, D. P., Meredith, P. G., & Boon, S. A. (2002). Simulation of subduction zone seismicity by dehydration of serpentine. Science,298, 1407–1410.

    Google Scholar 

  • Escartin, J., Hirth, G., & Evans, B. (2001). Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere. Geology,29, 1023–1026.

    Google Scholar 

  • Estabrook, C. H. (2004). Seismic constraints on mechanisms of deep earthquake rupture. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2003JB002449.

    Article  Google Scholar 

  • Frohlich, C. (1989). The nature of deep focus earthquakes. Annual Review of Earth and Planetary Sciences,17, 227–254.

    Google Scholar 

  • Gao, P. (1998). The conductivity of serpentine at high pressure and high temperature and its significance in earthquake research. Earthquake, 18, 53–57. (in Chinese).

    Google Scholar 

  • Gao, P., & Guo, C. (1997). An experimental study of wave velocities in rocks from the Yanghuai basin and its geological implications. Seismology and Geology,19, 259–268.

    Google Scholar 

  • Gao, P., Liu, R., Ma, B., Li, B., & Mu, R. (1994). The physical and mechanical properties of chlorite-schist and plagiochase amphibolite at high P T conditions and its application. Seismology and Geology, 16(1), 83–88. (in Chinese).

    Google Scholar 

  • Gasc, J., Brunet, F., Bagdassarov, N., & Morales-Florez, V. (2011). Electrical conductivity of polycrystalline Mg(OH)2 at 2 GPa: Effect of grain boundary hydration–dehydration. Physics and Chemistry of Minerals,38, 543–556.

    Google Scholar 

  • Green, H. W., & Houston, H. (1995). The mechanics of deep earthquakes. Annual Review of Earth and Planetary Sciences,23, 169–213.

    Google Scholar 

  • Grevemeyer, I., Ranero, C. R., & Ivandic, M. (2018). Structure of oceanic crust and serpentinization at subduction trenches. Geosphere,14, 395–418.

    Google Scholar 

  • Guo, X. Z. (2016). Experimental study of the electrical conductivity of the hydrous minerals in the crust and the mantle under high pressure and high temperature. Science China Earth Sciences,59, 696–706. https://doi.org/10.1007/s11430-015-5249-5.

    Article  Google Scholar 

  • Hacker, B. R., Abers, G. A., & Peacock, S. M. (2003a). Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2001JB001127.

    Article  Google Scholar 

  • Hacker, B. R., Peacock, S. M., Abers, G. A., & Holloway, S. D. (2003b). Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2001JB001129.

    Article  Google Scholar 

  • Hilaret, N., & Reynard, B. (2009). Stability and dynamics of serpentinite layer in subduction zone. Tectonophysics,465, 24–29.

    Google Scholar 

  • Hinze, E., Will, G., & Cemic, L. (1981). Electrical conductivity measurements on synthetic olivines and on olivine, enstatite and diopside from Dreiser Weiher, Eifel (Germany) under defined thermodynamic activities as a function of temperature and pressure. Physics of the Earth and Planetary Interiors,25, 245–254.

    Google Scholar 

  • Hirose, T., & Bystricky, M. (2007). Extreme dynamic weakening of faults during dehydration by coseismic shear heating. Geophysical Research Letters. https://doi.org/10.1029/2007gl030049.

    Article  Google Scholar 

  • Homburg, J. M. (2013). Field and theoretical investigations of strain localization: Effects of mineralogy, shear heating and grain size evolution on deformation in the Earth. New York: Columbia University.

    Google Scholar 

  • Hyndman, R. D., & Peacock, S. M. (2003). Serpentinization of the forearc mantle. Earth and Planetary Science Letters,212, 417–432.

    Google Scholar 

  • Ito, K., & Tatsumi, Y. (1995). Measurement of elastic wave velocities in granulite and amphibolite having identical H2O-free bulk compositions up to 850 °C at 1 Gpa. Earth and Planetary Science Letters,133, 255–264.

    Google Scholar 

  • Ji, S., Li, A., Wang, Q., Long, C., Wang, H., Marcotte, D., et al. (2013). Seismic velocities, anisotropy, and shear-wave splitting of antigorite serpentinites and tectonic implications for subduction zones. Journal of Geophysical Research: Solid Earth,118, 1015–1037.

    Google Scholar 

  • Jiang, X., Zhou, W., Liu, C., Xie, H., & Liu, Y. (2008). Compressional eave velocity for hornblende plagiogneiss at 1.0 GPa and up to 1100 °C: Measured and calculated results. Acta Petrologic Sinica,24, 2441–2446. (in Chinese).

    Google Scholar 

  • Johannes, W. (1968). Experimental investigation of the reaction forsterite + H2O \(\rightleftharpoons\) serpentine + brucite. Contributions to Mineralogy and Petrology,19, 309–315.

    Google Scholar 

  • John, T., Medvedev, S., Rupke, L. H., Andersen, T. B., Podladchikov, Y. Y., & Austrheim, H. (2009). Generation of intermediate-depth earthquakes by self-localizing thermal runaway. Nature Geoscience,2, 137–140.

    Google Scholar 

  • Jung, H., & Green, H. W. (2004). Experimental faulting of serpentinite during dehydration: Implications for earthquakes, seismic low-velocity zones, and anomalous hypocenter distributions in subduction zones. International Geology Review,46, 1089–1102.

    Google Scholar 

  • Katayama, I., Hirauchi, K., Michibayashi, K., & Ando, J. I. (2009). Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature,461, 1114–1118.

    Google Scholar 

  • Katsura, T., Sato, K., & Ito, E. (1998). Electrical conductivity of silicate perovskite at lower-mantle conditions. Nature,395, 493–495.

    Google Scholar 

  • Kelemen, P. B., & Hirth, G. (2007). A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature,446, 787–790.

    Google Scholar 

  • Kern, H. (1978). The effect of high temperature and high confining pressure on compressional wave velocities in quartz-bearing and quartz-free igneous and metamorphic rocks. Tectonophysics,44, 185–203.

    Google Scholar 

  • Kern, H. (1982). Elastic-wave velocity in crustal and mantle rocks at high pressure and temperature: The role of the high-low quartz transition and of dehydration reactions. Physics of the Earth and Planetary Interiors,29, 12–23.

    Google Scholar 

  • Kern, H., & Fakhimi, M. (1975). Effect of fabric anisotropy on compressional-wave propagation in various metamorphic rocks for the range 20–700° C at 2 kbars. Tectonophysics, 28(4), 227–244.

    Google Scholar 

  • Kim, Y. H., Clayton, R. W., Asimow, P. D., & Jackson, J. M. (2013). Generation of talc in the mantle wedge and its role in subduction dynamics in central Mexico. Earth and Planetary Science Letters,384, 81–87.

    Google Scholar 

  • Kita, S., Okada, T., Nakajima, J., Matsuzawa, T., & Hasegawa, A. (2006). Existence of a seismic belt in the upper plane of the double seismic zone extending in the along-arc direction at depths of 70–100 km beneath NE Japan. Geophysical Research Letters. https://doi.org/10.1029/2006GL028239.

    Article  Google Scholar 

  • Kono, Y., Ishikawa, M., & Arima, M. (2007). Effect of H–O released by dehydration of serpentine and chlorite on compressional wave velocities of peridotites at 1 GPa and up to 1000 °C. Physics of the Earth and Planetary Interiors,161, 215–223.

    Google Scholar 

  • Kurtulus, C., Bozkurt, A., & Endes, H. (2012). Physical and mechanical properties of serpentinized ultrabasic rocks in NW Turkey. Pure and Applied Geophysics,169, 1205–1215.

    Google Scholar 

  • Lebedev, E. B., Dorfman, A. M., & Zebrin, S. R. (1991). Study of the mechanism of the influence of water on elasticwave propagation in amphibolites and some metamorphic rocks at high pressures and temperatures. Physics of the Earth and Planetary Interiors,66, 313–319.

    Google Scholar 

  • Lebedev, E. B., & Zharikov, A. V. (2000). Study of intergranular films and interstitial phases in geomaterials using high temperature centrifuge and ultrasonic method at high pressure. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy,25, 209–214.

    Google Scholar 

  • Li, A. (2012). The experiment research on the seismic wave velocity and anisotropy of serpentinite. Doctoral dissertation of Chinese academy of geological science, China (in Chinese).

  • Lin, A., Takano, S., Hirono, T., & Kanagawa, K. (2013). Coseismic dehydration of serpentinite: Evidence from high-velocity friction experiments. Chemical Geology,344, 50–62.

    Google Scholar 

  • Liu, W. (2002). Elastic P-wave velocity and dynamic characteristics of some rocks at high pressures and high temperatures. Doctoral dissertation of institute of geology, China (in Chinese).

  • Liu, B., Ge, N. J., Ken, H., & Poop, T. (1998). Velocities and attenuation of P and S waves and their anisotropies in serpentinite and amphibolite under different P-T conditions. Acta Geophysica Sinica,41, 371–381. (in Chinese).

    Google Scholar 

  • Liu, Z. Y., Wang, D. J., Li, H. P., Guo, Y. X., & Yu, Y. J. (2011). A preliminary study on conductivity of serpentinite at high pressure and high temperature. Chinese Journal of High Pressure Physics,25, 147–152. (in Chinese).

    Google Scholar 

  • Luo, W. (2008). Research on mineralogy characteristics and adsorption capability of serpentine from Jianchaling. Master Thesis of Chang’an University. China, 17–18 (in Chinese).

  • Mevel, C. (2003). Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience,335, 825–852.

    Google Scholar 

  • Mookherjee, M., & Stixrude, L. (2009). Structure and elasticity of serpentine at high-pressure. Earth and Planetary Science Letters,279, 11–19.

    Google Scholar 

  • Mu, R., Gao, P., Liu, R., & Ma, B. (1995). The experimental study of P-wave velocity anisotropy of mylonite and it’s surrounding rocks prom ductile shear zones of north-china at elevated pressures and temperatures. Acta Geophysica Sinica,38, 213–220. (in Chinese).

    Google Scholar 

  • Ning, J. Y., & Zang, S. X. (1999). On the generation of deep focus earthquakes in subduction zones. Acta Seismologica Sinica,12, 573–583.

    Google Scholar 

  • Omori, S., Kamiya, S., Maruyama, S., & Zhao, D. (2002). Morphology of the intra slab seismic zone and devolatilization phase equilibria of the subducting slab peridotite. Bulletin of the Earthquake Research Institute University of Tokyo,76, 455–478.

    Google Scholar 

  • Omori, S., Komabayashi, T., & Maruyama, S. (2004). Dehydration and earthquakes in the subducting slab: Empirical link in intermediate and deep seismic zones. Physics of the Earth and Planetary Interiors,146, 297–311.

    Google Scholar 

  • Peacock, S. M. (2001). Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology,29, 299–302.

    Google Scholar 

  • Peacock, S. M. (2003). Thermal structure and metamorphic evolution of subducting slabs. Geophysical Monograph-American Geophysical Union,138, 7–22.

    Google Scholar 

  • Peacock, S. M., & Wang, K. (1999). Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science,286, 937–939.

    Google Scholar 

  • Popp, T., & Kern, H. (1993). Thermal dehydration reactions characterised by combined measurements of electrical conductivity and elastic velocities. Earth and Planetary Science Letters,120, 43–57.

    Google Scholar 

  • Raleigh, C. B., & Paterson, M. S. (1965). Experimental deformation of serpentinite and its tectonic implications. Journal of Geophysical Research,70, 3965–3985.

    Google Scholar 

  • Reynard, B. (2013). Serpentine in active subduction zones. Lithos,178, 171–185.

    Google Scholar 

  • Reynard, B., Mibe, K., & Van de Moortele, B. (2011). Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth and Planetary Science Letters,307, 387–394.

    Google Scholar 

  • Richard, G., Monnereau, M., & Rabinowicz, M. (2007). Slab dehydration and fluid migration at the base of the upper mantle: Implications for deep earthquake mechanisms. Geophysical Journal International,168, 1291–1304.

    Google Scholar 

  • Rupke, L. H., Morgan, J. P., Hort, M., & Connolly, A. D. (2004). Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters,223, 17–34.

    Google Scholar 

  • Schmitt, D. R., Han, Z., Kravchinsky, V. A., & Escartin, J. (2007). Seismic and magnetic anisotropy of serpentinized ophiolite: Implications for oceanic spreading rate dependent anisotropy. Earth and Planetary Science Letters,261, 590–601.

    Google Scholar 

  • Schubnel, A., Brunet, F., Hilairet, N., Gasc, J., Wang, Y., & Green, H. W. (2013). Deep-focus earthquake analogs recorded at high pressure and temperature in the laboratory. Science,341, 1377–1380.

    Google Scholar 

  • Seipold, U. (1998). Temperature dependence of thermal transport properties of crystalline rocks: A general law. Tectonophysics,291, 161–171.

    Google Scholar 

  • Shen, T. T., Zhang, L. F., & Chen, J. (2016). Metamorphism of subduction zone serpentinite. Acta Petrologica Sinica,32, 1206–1218.

    Google Scholar 

  • Song, M., Xie, H., Zhang, Y., Xu, Y., Guo, J., Xu, Z., Xu, H., & Zheng, H. (1996). Dehydration temperature of serpentine at elevated temperatures and pressures by electrical conductivity method and its implications. Chinese Journal of Geochemistry, 15(2), 159–163.

    Google Scholar 

  • Stern, R. J. (2002). Subduction zones. Reviews of Geophysics,40(3-1), 3-38.

    Google Scholar 

  • Sun, J., Xie, Y., & Zhang, Y. (2000). Seismic wave velocity of Archaeozoic felsic rocks from north China and its exiting location in the crust. Acta Seismologic Sinica,22, 622–631. (in Chinese).

    Google Scholar 

  • Tao, W. C., & O’Connell, R. J. (1993). Deformation of a weak subducted slab and variation of seismicity with depth. Nature,361, 626–628.

    Google Scholar 

  • Ulmer, P., & Trommsdorff, V. (1995). Serpentine stability to mantle depths and subduction-related magmatism. Science,268, 858–861.

    Google Scholar 

  • Wagner, L. S., Beck, S., & Zandt, G. (2005). Upper mantle structure in the south central Chilean subduction zone (30 to 36 S). Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2004JB003238.

    Article  Google Scholar 

  • Wang, Q., Bagdassarov, N., & Ji, S. (2013). The Moho as a transition zone: A revisit from seismic and electrical properties of minerals and rocks. Tectonophysics,609, 395–422.

    Google Scholar 

  • Wang, Q., Shao, T., Ji, S., Michibayashi, K., Kondo, Y., Long, C., et al. (2014). Seismic velocities, anisotropy and elastic properties of Xiuyan Jade and its geological implications. Geotectonica et Metallogenia,38, 12–26. (in Chinese).

    Google Scholar 

  • Wu, Z., & Guo, C. (1993). Experimental measurement of v p on the crust rocks of east Hehei province at high temperature and pressure. Advances in Geophysics,8, 206–213. (in Chinese).

    Google Scholar 

  • Wunder, B., Wirth, R., & Gottschalk, M. (2001). Antigorite: Pressure and temperature dependence of polysomatism and water content. European Journal of Mineralogy,13, 485–496.

    Google Scholar 

  • Xie, H. S., Zhou, W. G., Li, Y. W., Guo, J., & Xu, Z. M. (2000). The elastic characteristics of serpentinite dehydration at high temperature high pressure and its significance. Chinese Journal of High Pressure Physics,43, 806–811. (in Chinese).

    Google Scholar 

  • Xie, H. S., Zhou, W. G., Zhu, M. X., Liu, Y. G., Zhao, Z. D., & Guo, J. (2002). Elastic and electrical properties of serpentinite dehydration at high temperature and high pressure. Journal of Physics: Condensed Matter,14, 11359. https://doi.org/10.1088/0953-8984/14/44/482.

    Article  Google Scholar 

  • Yamasaki, T., & Seno, T. (2003). Double seismic zone and dehydration embrittlement of the subducting slab. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2002JB001918.

    Article  Google Scholar 

  • Yang, X., Zhou, P., & Ming, Y. (2007). v p characteristics of the mica gneiss under high temperature: The reasons of the abnormal velocity layer in the crust. Chinese Science Bulletin,52, 2175–2179. (in Chinese).

    Google Scholar 

  • Yoshino, T. (2010). Laboratory electrical conductivity measurement of mantle minerals. Surveys In Geophysics,31, 163–206.

    Google Scholar 

  • Yoshino, T., Matsuzaki, T., Yamashita, S., & Katsura, T. (2006). Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature,443, 973–976.

    Google Scholar 

  • Zhang, Y., & Li, B. (1993). Investigation of wave velocity of crustal rocks in Shanxi rift zone. Advances in Geophysics,8, 214–224. (in Chinese).

    Google Scholar 

  • Zhang, Y., Sekine, T., & He, H. (2014). A new interpretation of decomposition products of serpentine under shock compression. American Mineralogist,99, 2374–2377.

    Google Scholar 

  • Zhang, Y., & Sun, J. (1998). Rock wave velocity types in the crust of north China and its geological applications. Seismology and Geology,20, 73–81. (in Chinese).

    Google Scholar 

  • Zhou, W., Xie, H., Zhao, Z., & Bai, W. (1999a). Compressional wave velocity and phase transformation for andesite at 2.0 GPa and at room temperature to 1160 °C. Earth Science Journal of China University of Geoscience,24, 261–264.

    Google Scholar 

  • Zhou, W., Xie, H., Zhao, Z., Zhu, W., Guo, J., & Xu, J. (1999b). Compressional wave velocity and phase transformation for a trachybasalt at 2.0 GPa and up to 1623 K. Progress in Natural Science,9, 279–285.

    Google Scholar 

  • Zhu, M. X., Xie, H. S., Guo, J., Bai, W. M., & Xu, Z. M. (2000). Experimental study of the electrical conductivity of the hydrous minerals in the crust and the mantle under high pressure and high temperature. Science in China (Series D),30, 634–641.

    Google Scholar 

  • Zhu, M. X., Xie, H. S., Guo, J., Zhang, Y. M., & Xu, Z. M. (1999). Experimental study of the electrical conductivity of the hydrous minerals in the crust and the mantle under high pressure and high temperature. Science China Earth Sciences,44, 1198–1202.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Opening Project of Geological Research Institute for Coal Green Mining (grant no. MTy2019-13) and the National Science Foundation of China (grant no. 41672279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuliang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Zhang, Y. & Dong, Z. Low-Wave-Velocity and High-Electrical-Conductivity Layer of Serpentine: A Compilation. Pure Appl. Geophys. 176, 4941–4954 (2019). https://doi.org/10.1007/s00024-019-02218-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02218-z

Keywords

Navigation