Skip to main content
Log in

An Objective Criterion for Selection of the Best Option in Hansen’s Method for Paleostress Estimation from Homogeneous Fault-Slip Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Hansen’s direct linear inversion method is a rapid and robust technique for paleostress estimation from fault-slip observations. The method uses six- and nine-dimensional spaces and requires a user judgement of the best solution from four possible options, i.e., the tensors 6D, 6Df, 9D and 9Df. We propose an objective criterion for selection of the best solution. Using each of the four possible options, as the reduced stress tensor, 6D, 6Df, 9D and 9Df, the criterion computes the slip vector on each fault plane in a given population of homogeneous fault-slip data. The option that gives minimum average angle between the computed slip vectors and the true or observed slip vectors on the corresponding fault planes is the best solution. The criterion is successfully tested on 236 synthetic and 5 natural examples representing a variety of stress states in different tectonic settings. One example of the natural fault-slip observations contains a vorticity component, whereas all other test examples are devoid of vorticity. In the triaxial stress states, two correct solutions are obtained, one of which is either 6D or 6Df, and the other is 9D or 9Df. In the stress states that are characterized by axial compression or axial extension, the correct solution is either 6D or 6Df and the use of nine-dimensional space fails to invert the observations. In the natural example that contains a vorticity component, only 9D gave the correct result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

(data from Table A1 in appendix V in Angelier 1990)

Similar content being viewed by others

References

  • Anderson, E. M. (1951). The dynamics of faulting (pp. 231–248). Edinburgh: Oliver & Boyd.

    Google Scholar 

  • Angelier, J. (1975). Sur l’analyse de measures recueillies dans des sites faillés: lùtilité dùne confrontation entre les méthodes dynamiques et cinematiques. Comptes Rendus de lÀcademie des Sciences, Paris, D281, 1805–1808.

    Google Scholar 

  • Angelier, J. (1979). Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56, T17–T26.

    Article  Google Scholar 

  • Angelier, J. (1984). Tectonic analysis of fault slip data set. Journal of Geophysical Research: Solid Earth, 89, 5835–5848.

    Article  Google Scholar 

  • Angelier, J. (1990). Inversion of field data in fault tectonics to obtain the regional stress—III. A new rapid direct inversion method by analytical means. Geophysical Journal International, 103, 363–376.

    Article  Google Scholar 

  • Angelier, J. (1994). Fault slip analysis and palaeostress reconstruction. In P. L. Hancock (Ed.), Continental deformation (pp. 53–101). Oxford: Pergamon Press.

    Google Scholar 

  • Angelier, J., Colletta, B., & Anderson, R. E. (1985). Neogene paleostress changes in the basin and range: A case study at Hoover Dam, Nevada-Arizona. Bulletin of Geological Society of America, 96, 347–1361.

    Article  Google Scholar 

  • Angelier, J., Lyberis, N., Le Pichon, X., Barrier, E., & Huchon, P. (1982a). The tectonic development of the Hellenic arc and the Sea of Crete: A synthesis. Tectonophysics, 86, 159–1196.

    Article  Google Scholar 

  • Angelier, J., Tarantola, A., Valette, B., & Manoussis, S. (1982b). Inversion of field data in fault tectonics to obtain the regional stress. I. Single phase fault populations: a new method of computing the stress tensor. Geophysical Journal of the Royal Astronomical Society, 69, 607–621.

    Article  Google Scholar 

  • Arlegui, L. E., Simón, J. L., Lisle, R. J., & Orife, T. (2005). Late Pliocene–Pleistocene stress field in the Teruel and Jiloca grabens (eastern Spain): Contribution of a new method of stress inversion. Journal of Structural Geology, 27, 693–705.

    Article  Google Scholar 

  • Armijo, R., Carey, E., & Cisternas, A. (1982). The inverse problem in microtectonics and the separation of tectonic phases. Tectonophysics, 82, 145–1160.

    Article  Google Scholar 

  • Bergerat, F. (1987). Stress fields in the European Platform at the time of Africa–Eurasia Collision. Tectonics, 6, 99–132.

    Article  Google Scholar 

  • Blenkinsop, T. G. (2006). Kinematic and dynamic fault slip analyses: implications from the surface rupture of the 1999 Chi–Chi, Taiwan, earthquake. Journal of Structural Geology, 28, 1040–1050.

    Article  Google Scholar 

  • Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96, 109–117.

    Article  Google Scholar 

  • Byerlee, J. D. (1978). Friction of rocks. Pure and Applied Geophysics, 116, 615–626.

    Article  Google Scholar 

  • Carey, E. (1976). Analyse numérique d’un modèle mécanique élémentaire appliqué à l’étuded’une population de failles: calcul d’un tenseurmoyen des contraintes à partir des stries de glissement, Theèe de.3èmecycle (pp. 1–1138). Orsay: Universite de Paris Sud.

    Google Scholar 

  • Carey, E., & Brunier, B. (1974). Analyse théorique et numérique dùnmod èlemécanique elementaire appliqué à létude dùn population de failles. Comptes Rendus Academy of Science, Paris, D, 279, 891–894.

    Google Scholar 

  • Delvaux, D., Levi, K., Kajara, R., & Sarota, J. (1992). Cenozoic paleostress and kinematic evolution of the Rukwa, North Malawi rift valley (East African system). Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 16, 383–406.

    Google Scholar 

  • Delvaux, D., & Sperner, B. (2003). Stress tensor inversion from fault kinematic indicators and focal mechanism data: The TENSOR program. In D. Nieuwland (Ed.), New insights into structural interpretation and modelling (Vol. 212, pp. 75–1100). London: Geological Society London, Special Publications.

    Google Scholar 

  • Etchecopar, A., Vasseur, G., & Daignieres, M. (1981). An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis. Journal of Structural Geology, 3, 51–65.

    Article  Google Scholar 

  • Fry, N. (1999). Striated faults: Visual appreciation of their constraint on possible paleostress tensors. Journal of Structural Geology, 21, 7–21.

    Article  Google Scholar 

  • Fry, N. (2001). Stress space: Striated faults, deformation twins, and their constraints on paleostress. Journal of Structural Geology, 23, 1–9.

    Article  Google Scholar 

  • Gapais, D., Cobbold, P. R., Bourgeois, O., & de Urreiztieta, Marc. (2000). Tectonic significance of fault-slip data. Journal of Structural Geology, 22, 881–888.

    Article  Google Scholar 

  • Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence. Journal of Geophysical Research, 89, 9305–9320.

    Article  Google Scholar 

  • Hansen, J.-A. (2013). Direct inversion of stress, strain or strain rate including vorticity: A linear method of homogenous fault-slip data inversion independent of adopted hypothesis. Journal of Structural Geology, 51, 3–13.

    Article  Google Scholar 

  • Hardcastle, K. C., & Hills, L. S. (1991). Brute3 and SELECT: Quickbasic 4 programs for determination of stress tensor configurations and separation of heterogeneous populations of fault-slip data. Computers and Geosciences, 17, 23–143.

    Article  Google Scholar 

  • Hardebeck, J. L., & Hanksson, E. (2001). Stress orientations obtained from earthquake focal mechanisms: What are appropriate uncertainty estimates? Bulletin of the Seismological Society of America, 91, 250–262.

    Article  Google Scholar 

  • Homberg, J. C., Angelier, J., Bergerat, F., & Lacombe, O. (1997). Characterization of stress perturbations near major fault zones; insights from 2-D distinct-element numerical modelling and field studies (Jura Mountains). Journal of Structural Geology, 19, 703–718.

    Article  Google Scholar 

  • Huang, Q. (1988). Computer-based method to separate heterogeneous sets of fault-slip data into sub-sets. Journal of Structural Geology, 10, 297–1299.

    Article  Google Scholar 

  • Liesa, C. L., & Lisle, R. J. (2004). Reliability of methods to separate stress tensors from heterogeneous fault-slip data. Journal of Structural Geology, 26, 559–572.

    Article  Google Scholar 

  • Lisle, R. J., Orife, T. O., Arlegui, L., Liesa, C., & Srivastava, D. C. (2006). Favoured states of paleostress in the Earth’s crust: evidence from fault-slip data. Journal of Structural Geology, 28, 1051–1066.

    Article  Google Scholar 

  • Lisle, R. J., & Srivastava, D. C. (2004). Test of the frictional reactivation theory for faults and validity of fault-slip analysis. Geology, 32, 569–572.

    Article  Google Scholar 

  • Marrett, R., & Allmendinger, R. W. (1990). Kinematic analysis of fault-slip data. Journal of Structural Geology, 12, 973–986.

    Article  Google Scholar 

  • Marrett, R., & Peacock, D. C. P. (1999). Strain and stress. Journal of Structural Geology, 21, 1057–1063.

    Article  Google Scholar 

  • Michael, A. J. (1984). Determination of stress from slip data: Faults and folds. Journal of Geophysical Research, 89, 11517–111526.

    Article  Google Scholar 

  • Morris, A. P., Ferrill, D. A., & McGinnis, R. N. (2016). Using fault displacement and slip tendency to estimate stress states. Journal of Structural Geology, 83, 60–72.

    Article  Google Scholar 

  • Nemcok, M., & Lisle, R. J. (1995). A stress inversion procedure for polyphase fault/slip data sets. Journal of Structural Geology, 17, 1445–1453.

    Article  Google Scholar 

  • Otsubo, M., Sato, K., & Yamaji, A. (2006). Computerized identification of stress tensors determined from heterogeneous fault-slip data by combining the multiple inverse method and k-means clustering. Journal of Structural Geology, 28, 952–1956.

    Article  Google Scholar 

  • Riller, U., Clark, M. D., Daxberger, H., Doman, D., Lenauer, I., Plath, S., et al. (2017). Fault-slip inversions: Their importance in terms of strain, heterogeneity, and kinematics of brittle deformation. Journal of Structural Geology, 101, 80–95.

    Article  Google Scholar 

  • Rocher, M., Lacombe, O., Angelier, J., Deffontaines, B., & Verdier, F. (2000). Cenozoic folding and faulting in the South Aquitaine Basin (France); Insights from combined structural and paleostress analysis. Journal of Structural Geology, 22, 627–645.

    Article  Google Scholar 

  • Shan, J., & Fry, N. (2006). The moment method used to infer stress from fault/slip data in sigma space: invalidity and modification. Journal of Structural Geology, 28, 1208–1213.

    Article  Google Scholar 

  • Shan, J., Suen, H., & Lin, G. (2003). Separation of polyphase fault/slip data: An objective function algorithm based on hard division. Journal of Structural Geology, 25, 829–840.

    Article  Google Scholar 

  • Sperner, B., & Zweigel, P. (2010). A plea for more caution in fault-slip analysis. Tectonophysics, 481, 29–41.

    Article  Google Scholar 

  • Thakur, P., Srivastava, D. C., & Gupta, P. K. (2017). The genetic algorithm: A robust method for stress inversion. Journal of Structural Geology, 94, 227–239.

    Article  Google Scholar 

  • Tranos, M. D. (2015). TR method (TRM): A separation and stress inversion method for heterogeneous fault-slip data driven by Andersonian extensional and compressional stress regimes. Journal of Structural Geology, 79, 57–74.

    Article  Google Scholar 

  • Tranos, M. D. (2017). The use of stress tensor discriminator faults in separating heterogeneous fault-slip data with best-fit stress inversion methods. Journal of Structural Geology, 102, 168–178.

    Article  Google Scholar 

  • Twiss, R. J., Protzman, G. M., & Hurst, S. D. (1991). Theory of slickenline patterns based on the velocity gradient tensor and microrotation. Tectonophysics, 186, 215–239.

    Article  Google Scholar 

  • Twiss, R. J., & Unruh, J. R. (1998). Analysis of fault slip inversions: Do they constrain stress or strain rate? Journal of Geophysical Research, 103, 12205–12222.

    Article  Google Scholar 

  • Vandycke, S. (2002). Palaeostress records in Cretaceous formations in NW Europe: extensional and strike–slip events in relationships with Cretaceous–Tertiary inversion tectonics. Tectonophysics, 357, 119–136.

    Article  Google Scholar 

  • Vandycke, S., & Bergerat, F. (2001). Brittle tectonic structures and palaeostress analysis in the Isle of Wight, Wessex basin, southern UK. Journal of Structural Geology, 23, 393–406.

    Article  Google Scholar 

  • Wallace, R. E. (1951). Geometry of shearing stress and relation to faulting. Journal of Geology., 59, 118–130.

    Article  Google Scholar 

  • Will, T. M., & Powell, R. (1991). A robust approach to the calculation of paleostress fields from fault plane data. Journal of Structural Geology, 13, 813–821.

    Article  Google Scholar 

  • Wojtal, S. (1989). Measuring displacement gradients and strains in faulted rocks. Journal of Structural Geology, 11, 669–678.

    Article  Google Scholar 

  • Wojtal, S., & Pershing, J. (1991). Paleostresses associated with faults of large offset. Journal of Structural Geology, 13, 49–62.

    Article  Google Scholar 

  • Xu, P. (2004). Determination of regional stress tensors from fault–slip data. Geophysical Journal International, 157, 1316–1330.

    Article  Google Scholar 

  • Xu, X., Tang, S., & Lin, S. (2016). Paleostress inversion of fault-slip data from the Jurassic to Cretaceous Huangshan Basin and implications for the tectonic evolution of southeastern China. Journal of Geodynamics, 98, 31–52.

    Article  Google Scholar 

  • Yamaji, A. (2000a). The multiple inverse method: A new technique to separate stresses from heterogeneous fault-slip data. Journal of Structural Geology, 22, 441–452.

    Article  Google Scholar 

  • Yamaji, A. (2000b). The multiple inverse method applied to meso-scale faults in mid-Quaternary fore-arc sediments near the triple trench junction off central Japan. Journal of Structural Geology, 22, 429–440.

    Article  Google Scholar 

  • Žalohar, J., & Vrabec, M. (2007). Paleostress analysis of heterogeneous fault-slip data: The Gauss method. Journal of Structural Geology, 29, 1798–1810.

    Article  Google Scholar 

  • Žalohar, J., & Vrabec, M. (2010). Kinematics and dynamics of fault reactivation: The Cosserat approach. Journal of Structural Geology, 32, 15–26.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Department of Science and Technology, Government of India to D. C. Srivastava. We are grateful to Rahul Dixit for help and rigorous testing of the method during the revision of the manuscript and to Arun Ojha for the critical reading of the revised manuscript. We are also grateful to the two reviewers for their erudite and constructive suggestions. Carlos Liesa, in particular, provided very useful suggestions that helped improve the manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Equal-area lower-hemisphere projections of 180 test data sets, simulated by using a known reduced tensor, are shown in Figs. 10, 11, 12, 13, 14, 15 and 16. These data sets are constrained by Byerlee’s law. In addition, 56 test data sets were simulated without imposing Byerlee’s law. Table 4 compares the 4 parameters in the best reduced stress tensors, selected by the minimum average angle criterion, with the parameters in the known reduced stress tensors used in the simulation of the 56 data sets.

Fig. 10
figure 10figure 10figure 10figure 10

148 Synthetic data sets for type-1 stress orientations and triaxial states, 0 < Φ < 1. Each data set, containing 15 fault-slip observations, is simulated for a true reduced stress tensor consisting of 4 parameters, the principal stress orientations (within matrix) and the stress ratio, Φ. One of the three principal stress axes is non-plunging in all the data sets

Fig. 11
figure 11figure 11figure 11figure 11figure 11figure 11

164 Synthetic data sets for type-2 stress orientations and triaxial states, 0 < Φ < 1. Each data set, containing 15 fault-slip observations, is simulated for a true reduced stress tensor consisting of 4 parameters, the principal stress orientations (within matrix) and the stress ratio, Φ. All three principal stress axes are plunging in all the data sets

Fig. 12
figure 12

112 Synthetic data sets with their respective stress orientations and stress ratio for Andersonian states. Stress states labelled 1–4, 5–8 and, 9–12 belong to extensional, compressional and strike-slip tectonic settings, respectively

Fig. 13
figure 13

112 Synthetic data sets for type-1 stress orientations and prolate stress ellipsoids, axial compression (Φ = 0). Each data set, containing 15 fault-slip observations, is simulated for a true reduced stress tensor consisting of 4 parameters, the three principal stress orientations (within matrix) and the stress ratio, Φ = 0. One of the three principal stress axes is non-plunging in all the data sets

Fig. 14
figure 14

112 Synthetic data sets for type-1 stress orientations and oblate stress ellipsoids, axial extension (Φ = 1). Each data set, containing 15 fault-slip observations, is simulated for a true reduced stress tensor consisting of 4 parameters, the three principal stress orientations (within matrix) and the stress ratio, Φ = 1. One of the three principal stress axes is non-plunging in all the data sets

Fig. 15
figure 15figure 15

116 Synthetic data sets for type-2 stress orientations and prolate stress ellipsoids, Φ = 0. Each data set, containing 15 fault-slip observations, is simulated for a true reduced stress tensor consisting of 4 parameters, the three principal stress orientations (within matrix) and the stress ratio, Φ = 0. All three principal stress axes are plunging in all the data sets

Fig. 16
figure 16figure 16

116 Synthetic data sets for type-2 stress orientations and oblate stress ellipsoids, Φ = 1. Each data set, containing 15 fault-slip observations, is simulated for a true reduced stress tensor consisting of 4 parameters, the three principal stress orientations (within matrix) and the stress ratio, Φ = 1. All three principal stresses axes are plunging in all the data sets

Table 4 Results of tests of minimum average angle criterion on 56 such data sets that are unconstrained by Byerlee’s law

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatnagar, K., Srivastava, D.C. & Gupta, P.K. An Objective Criterion for Selection of the Best Option in Hansen’s Method for Paleostress Estimation from Homogeneous Fault-Slip Data. Pure Appl. Geophys. 176, 1731–1766 (2019). https://doi.org/10.1007/s00024-018-2062-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2062-z

Keywords

Navigation