Skip to main content
Log in

Seismic Imaging of the Southern California Plate Boundary around the South-Central Transverse Ranges Using Double-Difference Tomography

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We derive high-resolution P and S seismic velocities (VP and VS) within the South-Central Transverse Ranges section of the San Andreas Fault (SAF), using a new double-difference tomography algorithm incorporating both event-pair and station-pair differential times. The addition of station-pair data allows for better absolute event locations and higher model resolution at shallow depths. Velocities within a 222 km × 164 km region are inverted using > 1,000,000 P and S arrival (picked with an automatic detection algorithm) and differential times from > 10,000 local events recorded by > 250 stations. Similarly large P and S datasets lead to high-quality VP/VS estimates of the region. The resulting models include low velocities along major fault segments and across-fault velocity contrasts. They also show very high VP/VS anomalies near shallow damaged rock, whereas fault zones exhibit either low (< 1.73) or high (> 1.73) VP/VS characteristics at greater depth. The variations in amplitude of these anomalies along the SAF through San Gorgonio Pass (SGP) suggest abrupt west-to-east changes in elastic properties. Moreover, their geometries imply near-vertical SAF segments northwest of SGP and northeast dipping faults southeast of that area. The SAF near Coachella Valley is estimated to dip by 57°. Regional-scale low and high VP/VS values are related to relative abundances of crystalline or metamorphic rocks. Near-fault VP/VS anomalies at depth are likely associated with changes in wet crack geometries. The obtained results can improve future calculations of seismic motion from large earthquakes in the area and related seismic hazard estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allam, A., & Ben-Zion, Y. (2012). Seismic velocity structures in the southern California plate boundary environment from double difference tomography. Geophysical Journal International, 190, 1181–1196.

    Google Scholar 

  • Allam, A. A., Ben-Zion, Y., Kurzon, I., & Vernon, F. L. (2014). Seismic velocity structure in the Hot Springs and Trifurcation Areas of the San Jacinto Fault Zone, California, from double-difference tomography. Geophysical Journal International, 198, 978–999. https://doi.org/10.1093/gji/ggu176.

    Google Scholar 

  • Allen, C. (1957). San Andreas fault zone in San Gorgonio Pass, southern California. Geological Society of America Bulletin, 68, 315–350.

    Google Scholar 

  • An, M. (2012). A simple method for determining the spatial resolution of a general inverse problem. Geophysical Journal International, 191, 849–864.

    Google Scholar 

  • Anderson, M., Matti, J., & Jachens, R. (2004). Structural model of the San Bernardino basin, California, from analysis of gravity, aeromagnetic and seismicity data. Journal of Geophysical Research, 109, B04404.

    Google Scholar 

  • Andrews, D. J., & Ben-Zion, Y. (1997). Wrinkle-like slip pulse on a fault between different materials. Journal of Geophysical Research, 102, 553–571.

    Google Scholar 

  • Axen, G. J., & Fletcher, J. M. (1998). Late Miocene-Pleistocene extensional faulting, northern Gulf of California, Mexico and Salton Trough, California. International Geology Review, 40(3), 217–244.

    Google Scholar 

  • Bailey, I. W., Becker, T. W., & Ben-Zion, Y. (2009). Patterns of co-seismic strain computed from Southern California focal mechanisms. Geophysical Journal International, 177, 1015–1036. https://doi.org/10.1111/j.1365-246X.2009.04090.x.

    Google Scholar 

  • Bankey, V., Cuevas, A., Daniels, D., Finn, C. A., Hernandez, I., Hill, P., Kucks, R., Miles, W., Pilkington, M., Roberts, C., Roest, W., Rystrom, V., Shearer, S., Snyder, S., Sweeney, R., Velez, L., Phillips, J. D., & Ravat, D. (2002). Digital data grids for the magnetic anomaly map of North America, U.S. Geological Survey Open-File Report 02-414.

  • Barak, S., Klemperer, S. L., & Lawrence, J. F. (2015). San Andreas Fault dip, Peninsular Ranges mafic lower crust and partial melt in the Salton Trough, Southern California, from ambient-noise tomography. Geochemistry, Geophysics, Geosystems, 16, 3946–3972.

    Google Scholar 

  • Becken, M., & Ritter, O. (2012). Magnetotelluric studies at the San Andreas Fault Zone: Implications for the role of fluids. Surveys in Geophysics, 33(1), 65–105.

    Google Scholar 

  • Bekas, C., Kokiopoulou, E., & Saad, Y. (2007). An estimator for the diagonal of a matrix. Applied Numerical Mathematics, 57(11–12), 1214–1229.

    Google Scholar 

  • Bennington, N. L., Thurber, C., Peng, Z., Zhang, H., & Peng, Z. (2013). Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California. Journal of Geophysical Research, 118, 1008–1014.

    Google Scholar 

  • Ben-Zion, Y. (1989). The response of two joined quarter spaces to SH line sources located at the material discontinuity interface. Geophysical Journal International, 98, 213–222.

    Google Scholar 

  • Ben-Zion, Y., & Malin, P. (1991). San Andreas fault zone head waves near Parkfield, California. Science, 251, 1592–1594.

    Google Scholar 

  • Ben-Zion, Y., & Sammis, C. G. (2003). Characterization of fault zones. Pure and Applied Geophysics, 160, 677–715.

    Google Scholar 

  • Blisniuk, K., Oskin, M., Me Riaux, A.-S., Rockwell, T., Finkel, R. C., & Ryerson, F. J. (2013). Stable, rapid rate of slip since inception of the San Jacinto fault, California. Geophysical Research Letters, 40, 4209–4213.

    Google Scholar 

  • Bogiatzis, P., Ishii, M., & Davis, T. A. (2016). Toward using direct methods in seismic tomography: Computation of the full resolution matrix using high performance computing and sparse QR factorization. Geophysical Journal International, 205(2), 830–836.

    Google Scholar 

  • Brocher, T. M. (2005). Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bulletin of the Seismological Society of America, 95(6), 2081–2092.

    Google Scholar 

  • Calderoni, G., Di Giovambattista, R., Vannoli, P., Pucillo, S., & Rovelli, A. (2012). Fault-trapped waves depict continuity of the fault system responsible for the 6 April 2009 MW 6.3 L’Aquila earthquake, central Italy. Earth and Planetary Science Letters, 323–324, 1–8.

    Google Scholar 

  • Carena, S., Suppe, J., & Kao, H. (2004). Lack of continuity of the San Andreas Fault in southern California: Three-dimensional fault models and earthquake scenarios. Journal of Geophysical Research, 109, B04313.

    Google Scholar 

  • Christensen, N. I. (1996). Poisson’s ratio and crustal seismology. Journal of Geophysical Research, 101(B2), 3139–3156.

    Google Scholar 

  • Cooke, M. L., & Dair, L. (2011). Simulating the recent evolution of the southern big bend of the San Andreas fault, Southern California. Journal of Geophysical Research, 116, B04405.

    Google Scholar 

  • Dair, L., & Cooke, M. L. (2009). San Andreas fault geometry through the San Gorgonio Pass, California. Geology, 37(2), 119–122.

    Google Scholar 

  • Fang, H., Zhang, H., Yao, H., Allam, A., Zigone, D., Ben-Zion, Y., et al. (2016). A new three-dimensional joint inversion algorithm of body-wave and surface-wave data and its application to the Southern California Plate Boundary Region. Journal of Geophysical Research, 121(5), 3557–3569.

    Google Scholar 

  • Fattaruso, L. A., Cooke, M. L., & Dorsey, R. J. (2014). Sensitivity of uplift patterns to dip of the San Andreas fault in the Coachella Valley, California. Geosphere, 10(6), 1557–1575.

    Google Scholar 

  • Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., et al. (2010). A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32, 1557–1575.

    Google Scholar 

  • Fialko, Y. (2006). Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature, 441, 968–971.

    Google Scholar 

  • Fichtner, A., & van Leeuwen, T. (2015). Resolution analysis by random probing. Journal of Geophysical Research, 120, 5549–5573.

    Google Scholar 

  • Fuis, G. S., Bauer, K., Goldman, M. R., Ryberg, T., Langenheim, V. E., Scheirer, D. S., et al. (2017). Subsurface geometry of the San Andreas Fault in Southern California: Results from the Salton Seismic Imaging Project (SSIP) and strong ground motion expectations. Bulletin of the Seismological Society of America, 107(3), 1642–1662.

    Google Scholar 

  • Fuis, G. S., Scheirer, D. S., Langenheim, V. E., & Kohler, M. D. (2012). A new perspective on the geometry of the San Andreas fault in southern California and its relationship to lithospheric structure. Bulletin of the Seismological Society of America, 102(1), 236–251.

    Google Scholar 

  • Gentili, S., & Michelini, A. (2006). Automatic picking of P and S phases using a neural tree. Journal of Seismology, 10, 39–63.

    Google Scholar 

  • Goebel, T. H. W., Hauksson, E., Shearer, P. M., & Ampuero, J. P. (2015). Stress-drop heterogeneity within tectonically complex regions: A case study of San Gorgonio Pass, southern California. Geophysical Journal International, 202(1), 514–528.

    Google Scholar 

  • Gold, P. O., Behr, W. M., Rood, D., Sharp, W. D., Rockwell, T. K., Kendrick, K., et al. (2015). Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California. Journal of Geophysical Research, 120(8), 5639–5663.

    Google Scholar 

  • Guo, H., McGuire, J. J., & Zhang, H. (2018). Imaging the subducted Gorda plate: Implications for the stress state and brittle-ductile transition of the Cascadia subduction zone. In: American Geophysical Union Fall Meeting Abstract T13H-0334, Washington, DC.

  • Guo, H., & Zhang, H. (2017). Development of double-pair double difference earthquake location algorithm for improving earthquake locations. Geophysical Journal International, 208, 333–348.

    Google Scholar 

  • Gutierrez, C., Bryant, W., Saucedo, G., & Wills, C. (2010). Geologic map of California. California: California Geological Survey.

    Google Scholar 

  • Hamiel, Y., Liu, Y., Lyakhovsky, V., Ben-Zion, Y., & Lockner, D. (2004). A visco-elastic damage model with applications to stable and unstable fracturing. Geophysical Journal International, 159, 1155–1165. https://doi.org/10.1111/j.1365-246X.2004.02452.x.

    Google Scholar 

  • Hardebeck, J. L., & Hauksson, E. (1999). Role of fluids in faulting inferred from stress field signatures. Science, 285, 236–239.

    Google Scholar 

  • Harden, J. W., & Matti, J. C. (1989). Holocene and late Pleistocene slip rates on the San Andreas fault in Yucaipa, California, using displaced alluvial-fan deposits and soil chronology. Geological Society of America Bulletin, 101, 1107–1117.

    Google Scholar 

  • Hauksson, E., Yang, W., & Shearer, P. M. (2012). Waveform relocated earthquake catalog for southern California (1981 to June 2011). Bulletin of the Seismological Society of America, 102(5), 2239–2244.

    Google Scholar 

  • Hearn, T. M., & Clayton, R. W. (1986). Lateral velocity variations in southern California. I. Results for the upper crust from Pg waves. Bulletin of the Seismological Society of America, 76(2), 495–509.

    Google Scholar 

  • Jones, L. M., Hutton, L. K., Given, D. D., & Allen, C. R. (1986). The North Palm Springs, California, earthquake sequence of July 1986. Bulletin of the Seismological Society of America, 76, 1830–1837.

    Google Scholar 

  • Kendrick, K. J., Matti, J. C., & Mahan, S. A. (2015). Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching. Geological Society of America Bulletin, 127(5–6), 825–849.

    Google Scholar 

  • Langenheim, V. E., Jachens, R. C., Matti, J. C., Hauksson, E., Morton, D. M., & Christensen, A. (2005). Geophysical evidence for wedging in the San Gorgonio Pass structural knot, southern San Andreas fault zone, southern California. Geological Society of America Bulletin, 117, 1554–1572.

    Google Scholar 

  • Langenheim, V. E., Jachens, R. C., Morton, D. M., Kistler, R. W., & Matti, J. C. (2004). Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California. Geological Society of America Bulletin, 116, 1143–1157.

    Google Scholar 

  • Lee, E.-J., Chen, P., Jordan, T. H., Maechling, P. B., Denolle, M. A. M., & Beroza, G. (2014). Full-3-D tomography for crustal structure in Southern California based on the scattering-integral and the adjoint-wavefield methods. Journal of Geophysical Research, 119(8), 6421–6451.

    Google Scholar 

  • Lévêque, J. J., Rivera, L., & Wittlinger, G. (1993). On the use of the checkerboard test to assess the resolution of tomographic inversions. Geophysical Journal International, 115, 313–318.

    Google Scholar 

  • Lewis, M. A., & Ben-Zion, Y. (2010). Diversity of fault zone damage and trapping structures in the Parkfield section of the San Andreas Fault from comprehensive analysis of near fault seismograms. Geophysical Journal International, 183(3), 1579–1595.

    Google Scholar 

  • Li, Y.-G., Aki, K., Adams, D., Hasemi, A., & Lee, W. H. K. (1994). Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992. Journal of Geophysical Research, 99, 11705–11722.

    Google Scholar 

  • Lin, G., & Shearer, P. M. (2009). Evidence for water-filled cracks in earthquake source regions. Geophysical Research Letters, 36, L17315.

    Google Scholar 

  • Lindsey, E. O., & Fialko, Y. (2013). Geodetic slip rates in the southern San Andreas Fault system: Effects of elastic heterogeneity and fault geometry. Journal of Geophysical Research, 118, 689–697.

    Google Scholar 

  • Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A., & Sidrin, A. (1992). Observations of quasistatic fault growth from acoustic emissions. International Geophysics, 51, 3–31.

    Google Scholar 

  • Lozos, J. C. (2016). A case for historic joint rupture of the San Andreas and San Jacinto faults. Science Advances, 2(3), e1500621.

    Google Scholar 

  • MacCarthy, J. K., Brochers, B., & Aster, R. C. (2011). Efficient stochastic estimation of the model resolution matrix diagonal and generalised cross-validation for large geophysical inverse problems. Journal of Geophysical Research, 116, B10304.

    Google Scholar 

  • Magistrale, H., & Sanders, C. (1996). Evidence from precise earthquake hypocenters for segmentation of the San Andreas fault in San Gorgonio Pass. Journal of Geophysical Research, 101, 3031–3041.

    Google Scholar 

  • Marliyani, G. I., Rockwell, T. K., Onderdonk, N. W., & McGill, S. F. (2013). Straightening of the northern San Jacinto Fault, California as seen in the fault-structure evolution of the San Jacinto Valley step-over. Bulletin of the Seismological Society of America, 103(1), 519–541.

    Google Scholar 

  • Matti, J. C., Morton, D. M., & Cox, B. F. (1992). The San Andreas fault system in the vicinity of the central Transverse Ranges province, southern California, U.S. Geological Survey Open-File Report 92-354.

  • Mavko, G., Mukerji, T., & Dvorkin, J. (1998). The rock physics handbook: Tools for seismic analysis in porous media (p. 329). Cambridge: Cambridge University Press.

    Google Scholar 

  • McGill, S., Owen, L., Weldon, R. J., & Kendrick, K. (2013). Latest Pleistocene and Holocene slip rate for the San Bernardino strand of the San Andreas Fault, Plunge Creek, Southern California: Implications for strain partitioning within the southern San Andreas Fault system for the last ~ 35 k.y. Geological Society of America Bulletin, 125(1/2), 48–72.

    Google Scholar 

  • McGill, S. F., Spinler, J. C., McGill, J. D., Bennett, R. A., Floyd, M. A., Fryxell, J. E., et al. (2015). Kinematic modeling of fault slip rates using new geodetic velocities from a transect across the Pacific-North America plate boundary through the San Bernardino Mountains, California. Journal of Geophysical Research, 120(4), 2772–2793.

    Google Scholar 

  • McGuire, J., & Ben-Zion, Y. (2005). High-resolution imaging of the Bear Valley section of the San Andreas Fault at seismogenic depths with fault-zone head waves and relocated seismicity. Geophysical Journal International, 163, 152–164.

    Google Scholar 

  • Meade, B. J., & Hager, B. H. (2005). Block models of crustal motion in southern California constrained by GPS measurements. Journal of Geophysical Research, 110, B03403.

    Google Scholar 

  • Mizuno, T., & Nishigami, K. (2006). Deep structure of the Nojima fault, southwest Japan, estimated from borehole observation of fault-zone trapped waves. Tectonophysics, 417, 231–247.

    Google Scholar 

  • Najdahmadi, B., Bohnhoff, M., & Ben-Zion, Y. (2016). Bimaterial interfaces at the Karadere segment of the North Anatolian Fault, northwestern Turkey. Journal of Geophysical Research, 121, 931–950.

    Google Scholar 

  • Nicholson, C. (1996). Seismic behavior of the southern San Andreas Fault Zone in the Northern Coachella Valley, California: Comparison of the 1948 and 1986 earthquake sequences. Bulletin of the Seismological Society of America, 86, 1331–1349.

    Google Scholar 

  • Nicholson, C., Plesch, A., Shaw, J. H., & Marshall, S. T. (2018). Enhancements, updates, and improved access to the Community Fault Model. Presented at the 2018 Southern California Earthquake Center Annual Meeting.

  • Nippress, S. E. J., Rietbrock, A., & Heath, A. E. (2010). Optimized automatic pickers: Application to the ANCORP data set. Geophysical Journal International, 181, 911–925.

    Google Scholar 

  • O’Connell, R. J., & Budiansky, B. (1974). Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research, 79(35), 5412–5426.

    Google Scholar 

  • Onderdonk, N. W., McGill, S. F., & Rockwell, T. K. (2015). Short-term variations in slip rate and size of prehistoric earthquakes during the past 2000 years on the northern San Jacinto fault zone, a major plate-boundary structure in southern California. Lithosphere, 7(3), 211–234.

    Google Scholar 

  • Oskin, M., Perg, L., Shelef, E., Strane, M., Gurney, E., Singer, B., et al. (2008). Elevated shear zone loading rate during an earthquake cluster in eastern California. Geology, 36(6), 507–510.

    Google Scholar 

  • Paige, C. C., & Saunders, M. A. (1982). Algorithm 583; LSQR: Sparse linear equations and least squares problems. ACM Transactions on Mathematical Software, 8(2), 195–209.

    Google Scholar 

  • Popp, T., & Kern, H. (1994). The influence of dry and water saturated cracks on seismic velocities of crustal rocks—A comparison of experimental data with theoretical model. Surveys in Geophysics, 15, 443–465.

    Google Scholar 

  • Porter, K., Jones, L., Cox, D., Goltz, J., Hudnut, K., Mileti, D., et al. (2011). The ShakeOut Scenario: A hypothetical Mw7.8 earthquake on the Southern San Andreas fault. Earthquake Spectra, 27(2), 239–261.

    Google Scholar 

  • Qin, L., Ben-Zion, Y., Qiu, H., Share, P.-E., Ross, Z. E., & Vernon, F. L. (2018). Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays. Geophysical Journal International, 213, 98–114. https://doi.org/10.1093/gji/ggx540.

    Google Scholar 

  • Qiu, H., Ben-Zion, Y., Ross, Z. E., Share, P.-E., & Vernon, F.L. (2017). Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array. Geophysical Journal International, 209(3), 1369–1388.

    Google Scholar 

  • Rawlinson, N., Fichtner, A., Sambridge, M., & Young, M. K. (2014). Seismic tomography and the assessment of uncertainty. Advances in Geophysics, 55, 1–76.

    Google Scholar 

  • Rockwell, T. K., Dawson, T. E., Ben-Horin, J. Y., & Seitz, G. (2015). A 21-event, 4,000-year history of surface ruptures in the Anza seismic gap, San Jacinto Fault, and implications for long-term earthquake production on a major plate boundary fault. Pure and Applied Geophysics, 172(5), 1143–1165.

    Google Scholar 

  • Ron, H., Freund, R., Garfunkel, Z., & Nur, A. (1984). Block rotations by strike-slip faulting: Structural and paleomagnetic evidence. Journal of Geophysical Research, 89(B7), 6256–6270.

    Google Scholar 

  • Ross, Z. E., & Ben-Zion, Y. (2014). Automatic picking of direct P, S seismic phases and fault zone head waves. Geophysical Journal International, 199, 368–381.

    Google Scholar 

  • Ross, Z. E., Hauksson, E., & Ben-Zion, Y. (2017). Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Science Advances, 3, e1601946. https://doi.org/10.1126/sciadv.1601946.

    Google Scholar 

  • Ross, Z. E., White, M. C., Vernon, F. L., & Ben-Zion, Y. (2016). An improved algorithm for real-time S-wave picking with application to the (augmented) ANZA network in Southern California. Bulletin of the Seismological Society of America, 106(5), 2013–2022.

    Google Scholar 

  • Sanders, C. O., & Kanamori, H. (1984). A seismotectonic analysis of the Anza seismic gap, San Jacinto fault zone, southern California. Journal of Geophysical Research, 89(B7), 5873–5890.

    Google Scholar 

  • SCEDC. (2013). Southern California earthquake data center. California: Caltech.Dataset. https://doi.org/10.7909/C3WD3xH.

    Google Scholar 

  • Share, P.-E., & Ben-Zion, Y. (2016). Bimaterial interfaces in the South San Andreas Fault with opposite velocity contrasts NW and SE from San Gorgonio Pass. Geophysical Research Letters. https://doi.org/10.1002/2016gl070774.

  • Share, P.-E., Ben-Zion, Y., Ross, Z. E., Qiu, H., & Vernon, F. (2017). Internal structure of the San Jacinto fault zone at Blackburn Saddle from seismic data of a linear array. Geophysical Journal International, 210(2), 819–832.

    Google Scholar 

  • Sharp, R. V. (1967). San Jacinto Fault Zone in the Peninsular Ranges of Southern California. Geological Society of America Bulletin, 78(6), 705–730.

    Google Scholar 

  • Shaw, J. H., Plesch, A., Tape, C., Suess, M. P., Jordan, T. H., Ely, G., et al. (2015). Unified structural representation of the southern California crust and upper mantle. Earth and Planetary Science Letters, 415, 1–15.

    Google Scholar 

  • Shlomai, H., & Fineberg, J. (2016). The structure of slip-pulses and supershear ruptures driving slip in bimaterial friction. Nature Communications, 7, 11787.

    Google Scholar 

  • Silver, L. T., & Chappell, B. W. (1987). The Peninsular Ranges batholith: An insight into the evolution of the Cordilleran batholiths of southwestern North America. Transactions of Royal Society of Edinburgh: Earth Sciences, 79, 105–121.

    Google Scholar 

  • Spinler, J. C., Bennett, R. A., Anderson, M. L., McGill, S. F., Hreinsdottir, S., & McCallister, A. (2010). Present-day strain accumulation and slip rates associated with southern San Andreas and Eastern California shear zone faults. Journal of Geophysical Research, 115, B11407.

    Google Scholar 

  • Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2010). Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophysical Journal International, 180, 433–462.

    Google Scholar 

  • Tapponnier, P., Armijo, R., Manighetti, I., & Courtillot, V. (1990). Bookshelf faulting and horizontal block rotations between overlapping rifts in southern Afar. Geophysical Research Letters, 17(1), 1–4.

    Google Scholar 

  • Thurber, C., & Eberhart-Phillips, D. (1999). Local earthquake tomography with flexible gridding. Computers & Geosciences, 25(7), 809–818.

    Google Scholar 

  • Thurber, C., Zhang, H., Waldhauser, F., Hardebeck, J., Michael, A., & Eberhart-Phillips, D. (2006). Three-dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region. Bulletin of the Seismological Society of America, 96, S38–S49.

    Google Scholar 

  • Trampert, J., Fichtner, A., & Ritsema, J. (2013). Resolution tests revisited: The power of random numbers. Geophysical Journal International, 192, 676–680.

    Google Scholar 

  • Vernon, F., UC San Diego (1982). ANZA Regional Network. International Federation of Digital Seismograph Networks. Other/Seismic Network. https://doi.org/10.7914/sn/az.

  • Vernon, F., & Ben-Zion, Y. (2010). San Jacinto Fault Zone Experiment. International Federation of Digital Seismograph Networks. Other/Seismic Network. https://doi.org/10.7914/sn/yn_2010.

  • Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward fault. Bulletin of the Seismological Society of America, 90, 1353–1368.

    Google Scholar 

  • Weertman, J. (1980). Unstable slippage across a fault that separates elastic media of different elastic constants. Journal of Geophysical Research, 85, 1455–1461.

    Google Scholar 

  • Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic mapping tools: Improved version released. EOS Transactions, American Geophysical Union, 94, 409–410.

    Google Scholar 

  • Yang, W., Hauksson, E., & Shearer, P. (2012). Computing a large refined catalog of focal mechanisms for Southern California (1981–2010): Temporal stability of the style of faulting. Bulletin of the Seismological Society of America, 102(3), 1179–1194.

    Google Scholar 

  • Yule, D. (2009). The enigmatic San Gorgonia Pass. Geology, 37(2), 191–192.

    Google Scholar 

  • Yule, D., & Sieh, K. (2003). Complexities of the San Andreas fault near San Gorgonio Pass: Implications for large earthquakes. Journal of Geophysical Research, 108, B11.

    Google Scholar 

  • Zhang, H., Nadeau, R. M., & Guo, H. (2017). Imaging the nonvolcanic tremor zone beneath the San Andreas fault at Cholame, California using station-pair double-difference tomography. Earth and Planetary Science Letters, 460, 76–85.

    Google Scholar 

  • Zhang, H., & Thurber, C. H. (2003). Double-difference tomography: The method and its application to the Hayward Fault, California. Bulletin of the Seismological Society of America, 93(5), 1875–1889.

    Google Scholar 

  • Zhang, H., & Thurber, C. (2006). Development and applications of double-difference seismic tomography. Pure and Applied Geophysics, 163(2–3), 373–403.

    Google Scholar 

  • Zhang, H., & Thurber, C. H. (2007). Estimating the model resolution matrix for large seismic tomography problems based on Lanczos bidiagonalization with partial reorthogonalization. Geophysical Journal International, 170, 337–345.

    Google Scholar 

  • Zigone, D., Ben-Zion, Y., Campillo, M., & Roux, P. (2015). Seismic tomography of the Southern California plate boundary region from noise-based Rayleigh and Love waves. Pure and Applied Geophysics, 172, 1002–1032.

    Google Scholar 

Download references

Acknowledgements

The seismic data used in this work were obtained from the Southern California Earthquake Data Center (SCEDC 2013) and the ANZA-YN seismic network database (Vernon 1982; Vernon and Ben-Zion 2010). The study was supported by the Earthquake Hazards Program of the USGS (grant G16AP00105). Several maps were made using the Generic Mapping Tools (Wessel et al. 2013). The manuscript benefited from useful comments by two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter-Ewald Share.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 14023 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Share, PE., Guo, H., Thurber, C.H. et al. Seismic Imaging of the Southern California Plate Boundary around the South-Central Transverse Ranges Using Double-Difference Tomography. Pure Appl. Geophys. 176, 1117–1143 (2019). https://doi.org/10.1007/s00024-018-2042-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2042-3

Keywords

Navigation