Skip to main content
Log in

Suitability of Open-Ocean Instrumentation for Use in Near-Field Tsunami Early Warning Along Seismically Active Subduction Zones

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Over the past decade, the number of open-ocean gauges capable of parsing information about a passing tsunami has steadily increased, particularly through national cable networks and international buoyed efforts such as the Deep-ocean Assessment and Reporting of Tsunami (DART). This information is analyzed to disseminate tsunami warnings to affected regions. However, most current warnings that incorporate tsunami are directed at mid- and far-field localities. In this study, we analyze the region surrounding four seismically active subduction zones, Cascadia, Japan, Chile, and Java, for their potential to facilitate local tsunami early warning using such systems. We assess which locations currently have instrumentation in the right locations for direct tsunami observations with enough time to provide useful warning to the nearest affected coastline—and which are poorly suited for such systems. Our primary findings are that while some regions are ill-suited for this type of early warning, such as the coastlines of Chile, other localities, like Java, Indonesia, could incorporate direct tsunami observations into their hazard forecasts with enough lead time to be effective for coastal community emergency response. We take into account the effect of tsunami propagation with regard to shallow bathymetry on the fore-arc as well as the effect of earthquake source placement. While it is impossible to account for every type of off-shore tsunamigenic event in these locales, this study aims to characterize a typical large tsunamigenic event occurring in the shallow part of the megathrust as a guide in what is feasible with early tsunami warning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abercrombie, R. E., Antolik, M., Felzer, K., & Ekström, G. (2001). The 1994 Java tsunami earthquake: Slip over a subducting seamount. Journal of Geophysical Research: Solid Earth, 106(B4), 6595–6607. https://doi.org/10.1029/2000JB900403.

    Article  Google Scholar 

  • Ammon, C. J., Kanamori, H., Lay, T., & Velasco, A. A. (2006). The 17 July 2006 Java tsunami earthquake. Geophysical Research Letters. https://doi.org/10.1029/2006GL028005.

    Google Scholar 

  • Atwater, B. F. (1992). Geologic evidence for earthquakes during the past 2000 years along the Copalis River, southern coastal Washington. Journal of Geophysical Research: Solid Earth, 97(B2), 1901–1919. https://doi.org/10.1029/91JB02346.

    Article  Google Scholar 

  • Baba, T., Takahashi, N., & Kaneda, Y. (2014). Near-field tsunami amplification factors in the Kii Peninsula, Japan for Dense Oceanfloor Network for Earthquakes and Tsunamis (DONET). Marine Geophysical Research, 35(3), 319–325. https://doi.org/10.1007/s11001-013-9189-1.

    Article  Google Scholar 

  • Barnes, C. R., Best, M. M., Johnson, F. R., Pautet, L., & Pirenne, B. (2013). Challenges, benefits, and opportunities in installing and operating cabled ocean observatories: Perspectives from NEPTUNE Canada. IEEE Journal of Oceanic Engineering, 38(1), 144–157.

    Article  Google Scholar 

  • Bernard, E. N., & Titov, V. V. (2015). Evolution of tsunami warning systems and products. Philosophical Transactions of the Royal Society A, 373(2053), 20140371.

    Article  Google Scholar 

  • Bernard, E. N., Wei, Y., Tang, L., & Titov, V. V. (2014). Impact of near-field, deep-ocean tsunami observations on forecasting the 7 December 2012 Japanese tsunami. Pure and Applied Geophysics, 171(12), 3483–3491. https://doi.org/10.1007/s00024-013-0720-8.

    Article  Google Scholar 

  • Bilek, S. L., & Engdahl, E. R. (2007). Rupture characterization and aftershock relocations for the 1994 and 2006 tsunami earthquakes in the Java subduction zone. Geophysical Research Letters, 34, L20311. https://doi.org/10.1029/2007GL031357.

    Article  Google Scholar 

  • Bilek, S. L., & Ruff, L. J. (2002). Analysis of the 23 June 2001 M w = 8.4 Peru underthrusting earthquake and its aftershocks. Geophysical Research Letters, 29(20), 1960. https://doi.org/10.1029/2002GL015543.

    Article  Google Scholar 

  • Borrero, J. C., McAdoo, B., Jaffe, B., Dengler, L., Gelfenbaum, G., Higman, B., et al. (2011). Field survey of the March 28, 2005 Nias-Simeulue earthquake and tsunami. Pure and Applied Geophysics, 168(6–7), 1075–1088.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x.

    Article  Google Scholar 

  • Fritz, H. M., Kongko, W., Moore, A., McAdoo, B., Goff, J., Harbitz, C., et al. (2007). Extreme runup from the 17 July 2006 Java tsunami. Geophysical Research Letters. https://doi.org/10.1029/2007GL029404.

    Google Scholar 

  • Fujii, Y., & Satake, K. (2008). Tsunami sources of the November 2006 and January 2007 great Kuril earthquakes. Bulletin of the Seismological Society of America, 98(3), 1559–1571.

    Article  Google Scholar 

  • Geist, E., & Yoshioka, S. (1996). Source parameters controlling the generation and propagation of potential local tsunamis along the Cascadia margin. Natural Hazards, 13(2), 151–177.

    Article  Google Scholar 

  • Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., et al. (2015). Fault slip distribution of the 2014 Iquique. Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data, Geophysical Research Letters, 42(4), 1053–1060. https://doi.org/10.1002/2014gl062604.

    Google Scholar 

  • Gusman, A. R., Tanioka, Y., Sakai, S., & Tsushima, H. (2012). Source model of the great 2011 Tohoku earthquake estimated from tsunami waveforms and crustal deformation data. Earth and Planetary Science Letters, 341, 234–242.

    Article  Google Scholar 

  • Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research, 117, B01302. https://doi.org/10.1029/2011JB008524.

    Article  Google Scholar 

  • Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., & Gusman, A. R. (2016). Source model of the 16 September 2015 Illapel, Chile, M w 8.4 earthquake based on teleseismic and tsunami data. Geophysical Research Letters, 43, 643–650. https://doi.org/10.1002/2015GL067297.

    Article  Google Scholar 

  • Hossen, M. J., Cummins, P. R., Dettmer, J., & Baba, T. (2015). Time reverse imaging for far-field tsunami forecasting: 2011 Tohoku earthquake case study. Geophysical Research Letters, 42, 9906–9915. https://doi.org/10.1002/2015GL065868.

    Article  Google Scholar 

  • Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6(5), 346–359. https://doi.org/10.1016/0031-9201(72)90058-1.

    Article  Google Scholar 

  • Kanamori, H., & Kikuchi, M. (1993). The 1992 Nicaragua earthquake: A slow tsunami earthquake associated with subducted sediments. Nature, 361(6414), 714–716. https://doi.org/10.1038/361714a0.

    Article  Google Scholar 

  • Lay, T. (2015). The surge of great earthquakes from 2004 to 2014. Earth and Planetary Science Letters, 409, 133–146. https://doi.org/10.1016/j.epsl.2014.10.047.

    Article  Google Scholar 

  • Lay, T., Yue, H., Brodsky, E. E., & An, C. (2014). The 1 April 2014 Iquique, Chile, M w 8.1 earthquake rupture sequence. Geophysical Research Letters, 41, 3818–3825. https://doi.org/10.1002/2014GL060238.

    Article  Google Scholar 

  • Li, L., Lay, T., Cheung, K. F., & Ye, L. (2016). Joint modeling of teleseismic and tsunami wave observations to constrain the 16 September 2015 Illapel, Chile, Mw 8.3 earthquake rupture process. Geophysical Research Letters, 43, 4303–4312. https://doi.org/10.1002/2016GL068674.

    Article  Google Scholar 

  • Melgar, D., LeVeque, R. J., Dreger, D. S., & Allen, R. M. (2016). Kinematic rupture scenarios and synthetic displacement data: An example application to the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 121(9), 6658–6674.

    Google Scholar 

  • Moore, G. F., Bangs, N. L., Taira, A., Kuramoto, S., Pangborn, E., & Tobin, H. J. (2007). Three-dimensional splay fault geometry and implications for tsunami generation. Science, 318(5853), 1128–1131.

    Article  Google Scholar 

  • Moreno, M., Li, S., Melnick, D., Bedford, J. R., Baez, J. C., Motagh, M., et al. (2018). Chilean megathrust earthquake recurrence linked to frictional contrast at depth. Nature Geoscience, 11, 285.

    Article  Google Scholar 

  • Moreno, M., Rosenau, M., & Oncken, O. (2010). 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature, 467(7312), 198. https://doi.org/10.1038/nature09349.

    Article  Google Scholar 

  • Mori, N., Takahashi, T., Yasuda, T., & Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical Research Letters. https://doi.org/10.1029/2011GL049210.

    Google Scholar 

  • National Geophysical Data Center database (NGDC). (2017). https://www.ngdc.noaa.gov. Accessed 19 Sept 17.

  • Newman, A. V., Hayes, G., Wei, Y., & Convers, J. (2011). The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation. Geophysical Research Letters. https://doi.org/10.1029/2010GL046498.

    Google Scholar 

  • Newman, A. V., & Okal, E. A. (1998). Teleseismic estimates of radiated seismic energy: The E/M 0 discriminant for tsunami earthquakes. Journal of Geophysical Research: Solid Earth, 103(B11), 26885–26898. https://doi.org/10.1029/98jb02236.

    Article  Google Scholar 

  • Okal, E. A. (2015). The quest for wisdom: Lessons from 17 tsunamis, 2004–2014. Philosophical Transactions of the Royal Society A, 373(2053), 20140370. https://doi.org/10.1098/rsta.2014.0370.

    Article  Google Scholar 

  • Ozaki, T. (2011). Outline of the 2011 off the Pacific coast of Tohoku Earthquake (M w 9.0). Earth, Planets and Space, 63(7), 57.

    Article  Google Scholar 

  • Percival, D. B., Denbo, D. W., Eblé, M. C., Gica, E., Huang, P. Y., Mofjeld, H. O., et al. (2015). Detiding DART® buoy data for real-time extraction of source coefficients for operational tsunami forecasting. Pure and Applied Geophysics, 172(6), 1653–1678.

    Article  Google Scholar 

  • Polet, J., & Kanamori, H. (2000). Shallow subduction zone earthquakes and their tsunamigenic potential. Geophysical Journal International, 142(3), 684–702. https://doi.org/10.1046/j.1365-246x.2000.00205.x.

    Article  Google Scholar 

  • Rabinovich, A. B., & Eblé, M. C. (2015). Deep-ocean measurements of tsunami waves. Pure and Applied Geophysics, 172(12), 3281–3312.

    Article  Google Scholar 

  • Rabinovich, A. B., Lobkovsky, L. I., Fine, I. V., Thomson, R. E., Ivelskaya, T. N., & Kulikov, E. A. (2008). Near-source observations and modeling of the Kuril Islands tsunamis of 15 November 2006 and 13 January 2007. Advances in Geosciences, 14, 105–116.

    Article  Google Scholar 

  • Ritsema, J., Lay, T., & Kanamori, H. (2012). The 2011 Tohoku Earthquake. Elements, 8(3), 183–188.

    Article  Google Scholar 

  • Rogers, G., & Dragert, H. (2003). Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science, 300(5627), 1942–1943. https://doi.org/10.1126/science.1084783.

    Article  Google Scholar 

  • Ruiz, S., Moreno, M., Melnick, D., Campo, F., Poli, P., Baez, J. C., Leyton F., & Madariaga, R. (2017). Reawakening of large earthquakes in South-Central Chile: The 2016 M w 7.6 Chiloé event. Geophysical Research Letters. 44(13), 6633–6640.

    Article  Google Scholar 

  • Satake, K., Shimazaki, K., Tsuji, Y., & Ueda, K. (1996). Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 379(6562), 246–249. https://doi.org/10.1038/379246a0.

    Article  Google Scholar 

  • Satake, K., Wang, K., & Atwater, B. F. (2003). Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2003JB002521.

    Google Scholar 

  • Song, Y. T. (2007). Detecting tsunami genesis and scales directly from coastal GPS stations. Geophysical Research Letters. https://doi.org/10.1029/2007GL031681.

    Google Scholar 

  • Tang, L., Titov, V. V., Bernard, E. N., Wei, Y., Chamberlin, C. D., & Newman, J. C., et al. (2012). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. Journal of Geophysical Research: Oceans, 117(C8), C08008.

    Article  Google Scholar 

  • Tang, L., Titov, V. V., Moore, C., & Wei, Y. (2016). Real-time assessment of the 16 September 2015 Chile tsunami and implications for near-field forecast. Pure and Applied Geophysics, 173(2), 369–387.

    Article  Google Scholar 

  • Tanioka, Y., & Sataka, K. (1996). Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling. Geophysical Research Letters, 23(13), 1549–1552. https://doi.org/10.1029/96gl01479.

    Article  Google Scholar 

  • Thomson, R., Fine, I., Rabinovich, A., Mihály, S., Davis, E., Heesemann, M., et al. (2011). Observation of the 2009 Samoa tsunami by the NEPTUNE-Canada cabled observatory: Test data for an operational regional tsunami forecast model. Geophysical Research Letters, 38, L11701. https://doi.org/10.1029/2011GL046728.

    Article  Google Scholar 

  • Titov, V.V., & González F.I. (1997). Implementation and testing of the method of splitting tsunami (MOST) model. US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Pacific Marine Environmental Laboratory.

  • Titov, V.V., Kânoğlu U., & Synolakis C. (2016b). Development of MOST for real-time tsunami forecasting. Diss. American Society of Civil Engineers. https://doi.org/10.1061/(asce)ww.1943-5460.000035703116004.

  • Titov, V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., & González, F. I. (2005). The global reach of the 26 December 2004 Sumatra tsunami. Science, 309(5743), 2045–2048.

    Article  Google Scholar 

  • Titov, V. V., Song, Y. T., Tang, L., Bernard, E. N., Bar-Sever, Y., & Wei, Y. (2016). Consistent estimates of tsunami energy show promise for improved early warning. Pure and Applied Geophysics, 173(12), 3863–3880. https://doi.org/10.1007/s00024-016-1312-1.

    Article  Google Scholar 

  • Wei, Y., Newman, A. V., Hayes, G. P., Titov, V. V., & Tang, L. (2014). Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic or GPS data: Application to the Tohoku 2011 tsunami. Pure and Applied Geophysics, 171(12), 3281–3305. https://doi.org/10.1007/s00024-014-0777-z.

    Article  Google Scholar 

  • Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic Mapping Tools: Improved version released. EOS Trans AGU, 94, 409–410.

    Article  Google Scholar 

  • Williamson, A., Newman, A. V., & Cummins, P. R. (2017). Reconstruction of coseismic slip from the 2015 Illapel earthquake using combined geodetic and tsunami waveform data. Journal of Geophysical Research: Solid Earth, 122(3), 2119–2130. https://doi.org/10.1002/2016jb013883.

    Google Scholar 

  • Witter, R. C., Zhang, Y. J., Wang, K., Priest, G. R., Goldfinger, C., Stimely, L., et al. (2013). Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere, 9(6), 1783–1803.

    Article  Google Scholar 

  • Yue, H., Lay, T., Rivera, L., An, C., Vigny, C., Tong, X., et al. (2014). Localized fault slip to the trench in the 2010 Maule, Chile M w = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations. Journal of Geophysical Research: Solid Earth, 119(10), 7786–7804. https://doi.org/10.1002/2014jb011340.

    Google Scholar 

Download references

Acknowledgements

This research was supported through State Funds through Georgia Tech to AVN. Figures were generated using Generic Mapping Tools from Wessel et al. (2013). Training on usage and implementation of the MOST tsunami model was made possible through the assistance of V. Titov, D. Arcas, and Y. Wei at the Pacific Marine Environmental Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy L. Williamson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williamson, A.L., Newman, A.V. Suitability of Open-Ocean Instrumentation for Use in Near-Field Tsunami Early Warning Along Seismically Active Subduction Zones. Pure Appl. Geophys. 176, 3247–3262 (2019). https://doi.org/10.1007/s00024-018-1898-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1898-6

Keywords

Navigation