Mediterranean Thermohaline Response to Large-Scale Winter Atmospheric Forcing in a High-Resolution Ocean Model Simulation

  • Eleonora Cusinato
  • Davide Zanchettin
  • Gianmaria Sannino
  • Angelo Rubino
Article

Abstract

Large-scale circulation anomalies over the North Atlantic and Euro-Mediterranean regions described by dominant climate modes, such as the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the East Atlantic/Western Russian (EAWR) and the Mediterranean Oscillation Index (MOI), significantly affect interannual-to-decadal climatic and hydroclimatic variability in the Euro-Mediterranean region. However, whereas previous studies assessed the impact of such climate modes on air–sea heat and freshwater fluxes in the Mediterranean Sea, the propagation of these atmospheric forcing signals from the surface toward the interior and the abyss of the Mediterranean Sea remains unexplored. Here, we use a high-resolution ocean model simulation covering the 1979–2013 period to investigate spatial patterns and time scales of the Mediterranean thermohaline response to winter forcing from NAO, EA, EAWR and MOI. We find that these modes significantly imprint on the thermohaline properties in key areas of the Mediterranean Sea through a variety of mechanisms. Typically, density anomalies induced by all modes remain confined in the upper 600 m depth and remain significant for up to 18–24 months. One of the clearest propagation signals refers to the EA in the Adriatic and northern Ionian seas: There, negative EA anomalies are associated to an extensive positive density response, with anomalies that sink to the bottom of the South Adriatic Pit within a ~ 2-year time. Other strong responses are the thermally driven responses to the EA in the Gulf of Lions and to the EAWR in the Aegean Sea. MOI and EAWR forcing of thermohaline properties in the Eastern Mediterranean sub-basins seems to be determined by reinforcement processes linked to the persistency of these modes in multiannual anomalous states. Our study also suggests that NAO, EA, EAWR and MOI could critically interfere with internal, deep and abyssal ocean dynamics and variability in the Mediterranean Sea.

Keywords

Mediterranean Sea thermohaline circulation teleconnections North Atlantic Oscillation East Atlantic pattern East Atlantic Western Russian Mediterranean Oscillation Interannual climate variability 

Notes

Acknowledgements

DZ and AR conceived the study. GS provided the model data and calculated transports. EC and DZ performed the statistical analyses. All authors contributed to discussion and writing of the paper. We thank two anonymous reviewers for their constructive criticism on the original manuscript.

Supplementary material

24_2018_1859_MOESM1_ESM.png (257 kb)
Supplementary material 1 (PNG 256 kb)
24_2018_1859_MOESM2_ESM.png (330 kb)
Supplementary material 2 (PNG 330 kb)
24_2018_1859_MOESM3_ESM.png (350 kb)
Supplementary material 3 (PNG 349 kb)
24_2018_1859_MOESM4_ESM.png (272 kb)
Supplementary material 4 (PNG 271 kb)
24_2018_1859_MOESM5_ESM.png (320 kb)
Supplementary material 5 (PNG 319 kb)
24_2018_1859_MOESM6_ESM.png (349 kb)
Supplementary material 6 (PNG 349 kb)
24_2018_1859_MOESM7_ESM.png (257 kb)
Supplementary material 7 (PNG 256 kb)
24_2018_1859_MOESM8_ESM.png (241 kb)
Supplementary material 8 (PNG 241 kb)
24_2018_1859_MOESM9_ESM.png (145 kb)
Supplementary material 9 (PNG 145 kb)
24_2018_1859_MOESM10_ESM.png (152 kb)
Supplementary material 10 (PNG 151 kb)
24_2018_1859_MOESM11_ESM.png (161 kb)
Supplementary material 11 (PNG 161 kb)
24_2018_1859_MOESM12_ESM.png (166 kb)
Supplementary material 12 (PNG 165 kb)
24_2018_1859_MOESM13_ESM.png (73 kb)
Supplementary material 13 (PNG 72 kb)
24_2018_1859_MOESM14_ESM.png (58 kb)
Supplementary material 14 (PNG 57 kb)
24_2018_1859_MOESM15_ESM.png (61 kb)
Supplementary material 15 (PNG 61 kb)
24_2018_1859_MOESM16_ESM.png (59 kb)
Supplementary material 16 (PNG 58 kb)
24_2018_1859_MOESM17_ESM.png (153 kb)
Supplementary material 17 (PNG 152 kb)
24_2018_1859_MOESM18_ESM.png (151 kb)
Supplementary material 18 (PNG 150 kb)
24_2018_1859_MOESM19_ESM.png (141 kb)
Supplementary material 19 (PNG 141 kb)
24_2018_1859_MOESM20_ESM.png (212 kb)
Supplementary material 20 (PNG 211 kb)
24_2018_1859_MOESM21_ESM.png (68 kb)
Supplementary material 21 (PNG 68 kb)
24_2018_1859_MOESM22_ESM.docx (5.3 mb)
Supplementary material 22 (DOCX 5384 kb)
24_2018_1859_MOESM23_ESM.avi (4.4 mb)
Supplementary material 23 (AVI 4486 kb)
24_2018_1859_MOESM24_ESM.avi (4.5 mb)
Supplementary material 24 (AVI 4632 kb)
24_2018_1859_MOESM25_ESM.avi (6.8 mb)
Supplementary material 25 (AVI 6974 kb)

References

  1. Adcroft, A., Hill, C., & Marshall, J. (1997). Representation by topography by shaved cells in a height coordinate ocean model. Monthly Weather Review, 125(9), 2293–2315.  https://doi.org/10.1175/1520-0493(1997)125%3c2293:ROTBSC%3e2.0.CO;2.
  2. Andrews, M. B., Knight, J. R., & Gray, L. J. (2015). A simulated lagged response of the North Atlantic oscillation to the solar cycle over the period 1960–2009. Environmental Research Letters.  https://doi.org/10.1088/1748-9326/10/5/054022.Google Scholar
  3. Borzelli, G. L. E., Gačič, M., Cardin, V., & Civitarese, G. (2009). Eastern Mediterranean transient and reversal of the Ionian Sea circulation. Geophysical Research Letters, 36, 15.  https://doi.org/10.1029/2009GL039261.CrossRefGoogle Scholar
  4. Brandimarte, L., Di Baldassarre, G., Bruni, G., D’Odorico, P., & Montanari, A. (2011). Relation between the North-Atlantic oscillation and hydroclimatic conditions in Mediterranean areas. Water Res. Manag., 25, 1269–1279.CrossRefGoogle Scholar
  5. Budillon, G., Lo Bue, N., Siena, G., & Spezie, G. (2010). Hydrographic characteristics of water masses and circulation in the Northern Ionian Sea. Deep-Sea Research II, 57, 441–457.  https://doi.org/10.1016/j.dsr2.2009.08.017.CrossRefGoogle Scholar
  6. Cardin, V., Civitarese, G., Hainbucher, D., Bensi, M., & Rubino, A. (2015). Thermohaline properties in the Eastern Mediterranean in the last three decades: Is the basin returning to the pre-EMT situation? Ocean Science, 11(1), 53–66.CrossRefGoogle Scholar
  7. Chen, H., Ma, H., Li, X., & Sun, S. (2015). Solar influences on spatial patterns of Eurasian winter temperature and atmospheric general circulation anomalies. J. Geophys Res Atmos., 120, 8642–8657.  https://doi.org/10.1002/2015JD023415.CrossRefGoogle Scholar
  8. Christensen, J. H., Krishna Kumar, K., Aldrian, E., An, S. I., Cavalcanti, I. F. A., de Castro, M., et al. (2013). Climate Phenomena and their Relevance for Future Regional Climate Change. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  9. Conte, M., Giuffrida, A., & Tedesco, S. (1989). The Mediterranean oscillation. Impact on precipitation and hydrology in Italy Climate Water: Publications of the Academy of Finland, Helsinki.Google Scholar
  10. Criado-Aldeanueva, F., & Soto-Navarro, F. J. (2013). The Mediterranean Oscillation Teleconnection Index: Station-based versus principal component paradigms. Advances in Meteorology.  https://doi.org/10.1155/2013/738501.Google Scholar
  11. Criado-Aldeanueva, F., Soto-Navarro, J., & Garcıa-Lafuente, J. (2012). Seasonal and interannual variability of surface heat and freshwater fluxes in the Mediterranean Sea: Budgets and exchange through the Strait of Gibraltar. International Journal of Climatology, 32, 286–302.  https://doi.org/10.1002/joc.2268.CrossRefGoogle Scholar
  12. Criado-Aldeanueva, F., Soto-Navarro, J., & Garcıa-Lafuente, J. (2014). Large-scale atmospheric forcing influencing the long-term variability of Mediterranean heat and freshwater budgets: Climatic Indices. J. Hydrometeorol., 15, 650–663.  https://doi.org/10.1175/JHM-D-13-04.1.CrossRefGoogle Scholar
  13. Dee, D. P., et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.  https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  14. Dünkeloh, A., & Jacobeit, J. (2003). Circulation dynamics of Mediterranean circulation variability 1948–98. International Journal of Climatology, 23, 1843–1866.  https://doi.org/10.1002/joc.973.CrossRefGoogle Scholar
  15. Gačič, M., Borzelli, G. L. E., Civitarese, G., Cardin, V., & Yari, S. (2010). Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophysical Research Letters, 37, L09608.  https://doi.org/10.1029/2010GL043216.Google Scholar
  16. Graf, H.-F., Zanchettin, D., Timmreck, C., & Bittner, M. (2014). Observational constraints on the tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar vortex. Climate Dynamics, 43, 3245.  https://doi.org/10.1007/s00382-014-2101-0.CrossRefGoogle Scholar
  17. Guimarães Nobre, G., Jongman, B., Aerts, J., & Ward, P. J. (2017). The role of climate variability in extreme floods in Europe. Environmental Research Letters, 12, 084012.  https://doi.org/10.1088/1748-9326/aa7c22.CrossRefGoogle Scholar
  18. Gündüz, M., & Özsoy, E. (2005). Effects of the North Sea Caspian pattern on surface fluxes of Euro-Asian Mediterranean Seas. Geophysical Research Letters, 32, L21701.  https://doi.org/10.1029/2005GL024315.CrossRefGoogle Scholar
  19. Harris, V., Edwards, M., & Olhede, S. C. (2014). Multidecadal Atlantic climate variability and its impact on marine pelagic communities. Journal of Marine Systems, 133, 55–69.CrossRefGoogle Scholar
  20. Harzallah, A., Jordà, G., Dubois, C., Sannino, G., Carillo, A., Li, L., et al. (2016). Long term evolution of heat budget in the Mediterranean Sea from Med-CORDEX forced and coupled simulations. Climate Dynamics.  https://doi.org/10.1007/s00382-016-3363-5.Google Scholar
  21. Haurwitz, M. W., & Brier, G. W. (1981). A Critique of the superposed epoch analysis method: Its application to solar–weather relations. Monthly Weather Review, 109, 2074–2079.CrossRefGoogle Scholar
  22. Herrmann, M., Somot, S., Calmanti, S., Dubois, C., & Sevault, F. (2011). Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration. Natural Hazards and Earth System Sciences, European Geosciences Union, 2011(11), 1983–2001.  https://doi.org/10.5194/nhess-11-1983-2011.CrossRefGoogle Scholar
  23. Incarbona, A., Martrat, B., Mortyn, P. G., Sprovieri, M., Ziveri, P., Gogou, A., et al. (2016). Mediterranean circulation perturbations over the last five centuries: Relevance to past Eastern Mediterranean transient-type events. Scientific Reports, 6, 29623.  https://doi.org/10.1038/srep29623.CrossRefGoogle Scholar
  24. Jordà, G., Von Schuckmann, K., Josey, S. A., Caniaux, G., Garcìa-Lafuente, J., Sammartino, S., et al. (2017). The Mediterranean Sea heat and mass budgets: Estimates. Uncertainties and Perspectives, Progress in Oceanography,.  https://doi.org/10.1016/j.pocean.2017.07.001.Google Scholar
  25. Josey, S. A., Somot, S., & Tsimplis, M. (2011). Impacts of atmospheric modes of variability on Mediterranean Sea heat surface exchange. Journal of Geophysical Research, 116, C02032.  https://doi.org/10.1029/2010JC006685.CrossRefGoogle Scholar
  26. Kazmin, A. S., Zatsepin, A. G., & Kontoyiannis, H. (2010). Comparative analysis of the long-term variability of winter surface temperature in the Black and Aegean Seas during 1982–2004 associated with the large-scale atmospheric forcing. International Journal of Climatology, 30, 1349–1359.  https://doi.org/10.1002/joc.1985.Google Scholar
  27. Krichak, S. O., & Alpert, P. (2005). Signatures of the NAO in the atmospheric circulation during wet winter months over the Mediterranean region. Theoretical and Applied Climatology, 82, 27–39.  https://doi.org/10.1007/s00704-004-0119-7.CrossRefGoogle Scholar
  28. Krichak, S. O., Breitgand, J. S., Gualdi, S., & Feldstein, S. B. (2014). Teleconnection–extreme precipitation relationships over the Mediterranean region. Theoretical and Applied Climatology, 17, 679–692.  https://doi.org/10.1007/s00704-013-1036-4.CrossRefGoogle Scholar
  29. Llasses, J., Jordà, G., Gomis, D., Adloff, F., Macías, D., Harzallah, A., et al. (2016). Heat and salt redistribution within the Mediterranean Sea in the Med-CORDEX model ensemble. Climate Dynamics.  https://doi.org/10.1007/s00382-016-3242-0.Google Scholar
  30. Marshall, J., Kushnir, Y., Battisti, D., et al. (2001). North Atlantic climate variability: phenomena, impacts and mechanisms. International Journal of Climatology, 21, 1863–1898.CrossRefGoogle Scholar
  31. Martínez-Asensio, A., Marcos, M., Tsimplis, M. N., Gomis, D., Josey, S., & Jordà, G. (2014). Impact of the atmospheric climate modes on Mediterranean Sea level variability. Glob. Planet. Ch., 118, 1–15.  https://doi.org/10.1016/j.gloplacha.2014.03.007.CrossRefGoogle Scholar
  32. Martínez-Asensio, A., Tsimplis, M. N., & Calafat, F. M. (2016). Decadal variability of European sea level extremes in relation to the solar activity. Geophysical Research Letters.  https://doi.org/10.1002/2016gl071355.Google Scholar
  33. Moreno-Chamarro, E., Zanchettin, D., Lohmann, K., Luterbacher, J., & Jungclaus, J. H. (2017). Winter amplification of the European little ice age cooling by the subpolar gyre. Scientific Reports, 7, 9981.  https://doi.org/10.1038/s41598-017-07969-0.CrossRefGoogle Scholar
  34. Palutikof, J. P., Conte, M., Casimiro Mendes, J., Goodess, C. M., & Espirito Santo, F. (1996). Climate and climate change. In C. J. Brandt & J. B. Thornes (Eds.), Mediterranean desertification and land use. London: John Wiley and Sons.Google Scholar
  35. Papadopoulos, V. P., Josey, S. A., Bartzokas, A., Somot, S., Ruiz, S., & Drakopoulou, P. (2012). Large-scale atmospheric circulation favoring deep and intermediate water formation in the Mediterranean Sea. Journal of Climate, 25, 6079–6091.  https://doi.org/10.1175/JCLI-D-11-00657.1.CrossRefGoogle Scholar
  36. Quadrelli, R., Pavan, V., & Molteni, F. (2001). Winter time variability of Mediterranean precipitation and its links with large-scale circulation anomalies. Climate Dynamics, 17, 457–466.CrossRefGoogle Scholar
  37. Reale, M., Salon, S., Crise, A., Farneti, R., Mosetti, R., & Sannino, G. (2017). Unexpected covariant behavior of the aegean and Ionian Seas in the period 1987–2008 by means of a nondimensional sea Surface Height Index. Journal of Geophysical Research: Oceans.  https://doi.org/10.1002/2017jc012983. (accepted).Google Scholar
  38. Rixen, M., Beckers, J. M., Levitus, S., Antonov, J., Boyer, T., Maillard, C., et al. (2005). The Western Mediterranean deep water: A proxy for climate change. Geophysical Research Letters, 32, L12608.  https://doi.org/10.1029/2005GL022702.CrossRefGoogle Scholar
  39. Robinson, A. R., Leslie, W. G., Theocharis, A., & Lascaratos, A. (2001). Mediterranean Sea circulation.  https://doi.org/10.1006/rwos.2001.0376.Google Scholar
  40. Roether, W., Klein, B., Manca, B. B., Theocharis, A., & Kioroglou, S. (2007). Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s. Progress in Oceanography, 74(4), 540–571.CrossRefGoogle Scholar
  41. Rubino, A., Romanenkov, D., Zanchettin, D., Cardin, V., Hainbucher, D., Bensi, M., et al. (2012). On the descent of dense water on a complex canyon system in the southern Adriatic basin. Continental Shelf Research, 44, 20–29.CrossRefGoogle Scholar
  42. Saeed, S., Van Lipzig, N., Müller, W. A., Saeed, F., & Zanchettin, D. (2014). Influence of the circumglobal wave-train on European summer precipitation. Climate Dynamics, 43, 503.  https://doi.org/10.1007/s00382-013-1871-0.CrossRefGoogle Scholar
  43. Schroeder, K., Josey, S. A., Herrmann, R., Grignon, L., Gasparini, G. P., & Bryden, H. L. (2010). Abrupt warming and salting of the western Mediterranean deep water after 2005: Atmospheric forcing and lateral advection. Journal of Geophysical Research, 115, C08029.  https://doi.org/10.1029/2009JC005749.Google Scholar
  44. Skliris, N., Sofianos, S., Gkanasos, A., Mantziafou, A., Vervatis, V., Axaopoulos, P., et al. (2012). Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dynamics, 62, 13–30.  https://doi.org/10.1007/s10236-011-0493-5.CrossRefGoogle Scholar
  45. Taricco, C., Alessio, S., Rubinetti, S., Zanchettin, D., Cosoli, S., Gačić, M., et al. (2015). Marine sediments remotely unveil long-term climatic variability over Northern Italy. Scientific Reports, 5, 12111.  https://doi.org/10.1038/srep12111.CrossRefGoogle Scholar
  46. Tsimplis, M. N., & Josey, S. A. (2001). Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophysical Research Letters, 28(5), 803–806.  https://doi.org/10.1029/2000GL012098.CrossRefGoogle Scholar
  47. Tsimplis, M. N., & Rixen, M. (2002). Sea level in the Mediterranean Sea: The contribution of temperature and salinity changes. Geophysical Research Letters, 29(23), 2136.  https://doi.org/10.1029/2002GL015870.CrossRefGoogle Scholar
  48. Vicente-Serrano, S. M., López-Moreno, J.I., Lorenzo-Lacruz, J., El Kenawy, A., Azorin-Molina, C., Morán-Tejeda, E., Pasho,E., Zabalza, J., Beguería, S., & Angulo-Martínez, M. (2011). The NAO Impact on Droughts in the Mediterranean Region. In: Vicente-Serrano, S.M., & Trigo, R.M. (eds.), Hydrological, socioeconomic and ecological impacts of the North Atlantic oscillation in the Mediterranean region. Advances in Global Change Research, 46, 23–40,  https://doi.org/10.1007/978-94-007-1372-7_3.
  49. Vignudelli, S., Gasparini, G. P., Astraldi, M., & Schiani, M. E. (1999). A possible influence of the North Atlantic oscillation on the circulation of the Western Mediterranean Sea. Geophysical Research Letters, 26(5), 623–626.CrossRefGoogle Scholar
  50. Zanchettin, D. (2017). Aerosol and solar irradiance effects on decadal climate variability and predictability. Current Climate Change Reports, 3, 150.  https://doi.org/10.1007/s40641-017-0065-y.CrossRefGoogle Scholar
  51. Zanchettin, D., Rubino, A., Traverso, P., & Tomasino, M. (2008). Impact of variations in solar activity on hydrological decadal patterns in northern Italy. Journal of Geophysical Research, 113, D12102.  https://doi.org/10.1029/2007JD009157.CrossRefGoogle Scholar
  52. Zanchettin, D., Rubino, A., Traverso, P., & Tomasino, M. (2009). Teleconnections force interannual-to-decadal tidal variability in the Lagoon of Venice (northern Adriatic). Journal of Geophysical Research, 114, D07106.  https://doi.org/10.1029/2008JD011485.CrossRefGoogle Scholar
  53. Zanchettin, D., Timmreck, C., Graf, H.-F., Rubino, A., Lorenz, S., Lohmann, K., et al. (2012). Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Climate Dynamics, 39(1–2), 419–444.  https://doi.org/10.1007/s00382-011-1167-1.CrossRefGoogle Scholar
  54. Zanchettin, D., Traverso, P., & Tomasino, M. (2006). Discussion on sea level fluctuations along the Adriatic coasts coupling to climate indices forced by solar activity: Insights into the future of Venice. Global and Planetary Change, 50, 226–234.  https://doi.org/10.1016/j.gloplacha.2006.01.001.CrossRefGoogle Scholar
  55. Zervakis, V., Georgopoulos, D., Karageorgis, A. P., & Theocharis, A. (2004). On the response of the Aegean Sea to climatic variability: a review. International Journal of Climatology, 24, 1845–1858.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Environmental Sciences, Informatics and StatisticsUniversity Ca’Foscari of VeniceMestreItaly
  2. 2.ENEA-Climate Modelling and Impacts LaboratoryRomeItaly

Personalised recommendations