Skip to main content
Log in

Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbot, J., & Marohasy, J. (2012). Application of artificial neural networks to rainfall forecasting in Queensland. Australia. Adv. Atmos. Sci., 29, 717–730. doi:10.1007/s00376-012-1259-9.

    Article  Google Scholar 

  • Acharya, N., Kar, S. C., Mohanty, U. C., Kulkarni, M. A., & Dash, S. K. (2011). Performance of GCMs for seasonal prediction over India-a case study for 2009 monsoon. Theoretical and applied climatology, 105, 505–520. doi:10.1007/s00704-010-0396-2.

    Article  Google Scholar 

  • Ajaya Mohan, S. R., & Goswami, N. B. (2003). Potential predictability of the Asian summer monsoon on monthly and seasonal time scales. Meteorology and Atmospheric Physics, 84, 83–100. doi:10.1007/s00703-002-0576-4.

    Article  Google Scholar 

  • Bose, N. K., & Liang, P. (1998). Neural network fundamentals with graphs, algorithms, and applications. New Delhi: Tata McGraw-Hill.

    Google Scholar 

  • Charaniya, N.A., Dudul, S.V. (2012). Focused time delay neural network model for rainfall prediction using indian ocean dipole index, in: Proceedings of the 2012 fourth international conference on computational intelligence and communication networks, CICN’12. IEEE Computer Society, Washington, DC, USA, pp. 851–855. doi:10.1109/CICN.2012.116.

  • Doblas-Reyes, F. J., Hagedorn, R., & Palmer, T. N. (2005). The rationale behind the success of multi-model ensembles in seasonal forecasting—II. Calibration and combination. Tellus A, 57, 234–252. doi:10.1111/j.1600-0870.2005.00104.x.

    Google Scholar 

  • Fausett, L. V. (1994). Fundamentals of neural networks: architectures, algorithms, and applications (40th ed.). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gadgil, S., & Sajani, S. (1998). Monsoon precipitation in the AMIP runs. Climate Dynamics, 14, 659–689. doi:10.1007/s003820050248.

    Article  Google Scholar 

  • Gadgil, S., & Srinivasan, J. (2011). Seasonal prediction of the Indian monsoon. Current Science, 100, 343–353.

    Google Scholar 

  • Goswami, P., & Srividya, (1996). A novel neural network design for long-range prediction of rainfall pattern. Current Science, 70, 447–457.

    Google Scholar 

  • Guhathakurta, P. (2008). Long lead monsoon rainfall prediction for meteorological sub-divisions of India using deterministic artificial neural network model. Meteorology and Atmospheric Physics, 101, 93–108. doi:10.1007/s00703-008-0335-2.

    Article  Google Scholar 

  • Hecht-Nielsen, R. (1990). Neurocomputing (pp. 115–117). Reading: Addison-Wesley.

    Google Scholar 

  • Hung, N. Q., Babel, M. S., Weesakul, S., & Tripathi, N. K. (2009). An artificial neural network model for rainfall forecasting in Bangkok, Thailand. Hydrology and Earth System Sciences, 13, 1413–1425. doi:10.5194/hess-13-1413-2009.

    Article  Google Scholar 

  • Janakiraman, S., Mohit, V., Ramesh, N. L., Priyanka, Y., & Sulochana, G. (2011). Prediction of the Indian summer monsoon rainfall using a state-of-the-art coupled ocean–atmosphere model. Current Science, 100, 354–362.

    Google Scholar 

  • Kripalani, H. R., Oh, H. J., Kulkarni, A., Sabade, S. S., & Chaudhari, S. H. (2007). South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theoretical and Applied Climatology, 90, 133–159. doi:10.1007/s00704-006-0282-0.

    Article  Google Scholar 

  • Kulkarni, M. A., Acharya, N., Kar, S. C., Mohanty, U. C., Tippett, M. K., Robertson, A. W., et al. (2012). Probabilistic prediction of Indian summer monsoon rainfall using global climate models. Theoretical and Applied Climatology, 107, 441–450. doi:10.1007/s00704-011-0493-x.

    Article  Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5, 115–133. doi:10.1007/BF02478259.

    Article  Google Scholar 

  • Nair, A., Mohanty, U. C., & Acharya, N. (2013). Monthly prediction of rainfall over India and its homogeneous zones during monsoon season: a supervised principal component regression approach on general circulation model products. Theoretical and Applied Climatology, 111, 327–339. doi:10.1007/s00704-012-0660-8.

    Article  Google Scholar 

  • Nair, A., Mohanty, U. C., Robertson, A. W., Panda, T. C., Luo, J.-J., & Yamagata, T. (2014). An analytical study of hindcasts from general circulation models for Indian summer monsoon rainfall. Meteorological Applications, 21, 695–707. doi:10.1002/met.1395.

    Article  Google Scholar 

  • Navone, H. D., & Ceccatto, H. A. (1994). Predicting Indian monsoon rainfall: a neural network approach. Climate Dynamics, 10, 305–312. doi:10.1007/BF00228029.

    Article  Google Scholar 

  • Pai, D.S., Bhan, S.C. (2015). Monsoon Report 2014 IMD Met. Monograph: ESSO Document No.: ESSO/IMD/Synoptic Met./01(2015)/17.

  • Pal, S., Das, J., Sengupta, P., & Banerjee, S. K. (2002). Short term prediction of atmospheric temperature using neural networks. Mausam, 53, 471–480.

    Google Scholar 

  • Pattanaik, D. R., & Kumar, A. (2010). Prediction of summer monsoon rainfall over India using the NCEP climate forecast system. Climate Dynamics, 34, 557–572. doi:10.1007/s00382-009-0648-y.

    Article  Google Scholar 

  • Potts, J. M., Folland, C. K., Jolliffe, I. T., & Sexton, D. (1996). Revised “LEPS” scores for assessing climate model simulations and long-range forecasts. Journal of Climate, 9, 34–53. doi:10.1175/1520-0442(1996)009<0034:RSFACM>2.0.CO;2.

    Article  Google Scholar 

  • Prasad, K., Dash, S. K., & Mohanty, U. C. (2010). A logistic regression approach for monthly rainfall forecasts in meteorological subdivisions of India based on DEMETER retrospective forecasts. International Journal of Climatology, 30, 1577–1588. doi:10.1002/joc.2019.

    Google Scholar 

  • Rajeevan, M., Bhate, J., Kale, J., & Lal, B. (2006). High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Current Science, 91, 296–306.

    Google Scholar 

  • Ramasubramanian, V. (2007). Time series analysis. New Delhi: IASRI.

    Google Scholar 

  • Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M. (1996). The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate. Max-Planck-Institut für Meteorologie, MPI Report No. 218, Hamburg, Germany, pp 90.

  • Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., et al. (2014). The NCEP climate forecast system version 2. Journal of Climate, 27, 2185–2208. doi:10.1175/JCLI-D-12-00823.1.

    Article  Google Scholar 

  • Saha, S., Nadiga, S., Thiaw, C., Wang, J., Wang, W., Zhang, Q., et al. (2006). The NCEP climate forecast system. J. Climate, 19, 3483–3517. doi:10.1175/JCLI3812.1.

    Article  Google Scholar 

  • Sahai, K. A., Soman, K. M., & Satyan, V. (2000). All India summer monsoon rainfall prediction using an artificial neural network. Climate Dynamics, 16, 291–302. doi:10.1007/s003820050328.

    Article  Google Scholar 

  • Sikka, D. R., & Ratna, S. B. (2011). On improving the ability of a high-resolution atmospheric general circulation model for dynamical seasonal prediction of the extreme seasons of the Indian summer monsoon. Mausam, 62, 339–360.

    Google Scholar 

  • Singh, P., & Borah, B. (2013). Indian summer monsoon rainfall prediction using artificial neural network. Stochastic environmental research and risk assessment., 27, 1585–1599. doi:10.1007/s00477-013-0695-0.

    Article  Google Scholar 

  • Singh, G., & Panda, R. K. (2011). Daily sediment yield modeling with artificial neural network using 10-fold cross validation method: a small agricultural watershed, Kapgari, India. International Journal of Earth Sciences and Engineering., 4, 443–450.

    Google Scholar 

  • Singh, G., & Panda, R. K. (2015). Bootstrap-based artificial neural network analysis for estimation of daily sediment yield from a small agricultural watershed. International Journal of Hydrology Science and Technology., 5, 333–348. doi:10.1504/IJHST.2015.072634.

    Article  Google Scholar 

  • Singh, G., Panda, R. K., & Lamers, M. (2015). Modeling of daily runoff from a small agricultural watershed using artificial neural network with resampling techniques. JJournal of Hydroinformatics., 17, 56–74. doi:10.2166/hydro.2014.106.

    Article  Google Scholar 

  • Sivanandam, S. N., & Deepa, S. N. (2007). Principles of soft computing. New Delhi: Wiley.

    Google Scholar 

  • Van den Dool, H. M. (1994). Searching for analogues, how long must we wait? Tellus A, 46, 314–324. doi:10.1034/j.1600-0870.1994.t01-2-00006.x.

    Article  Google Scholar 

  • Venkatesan, C., Raskar, S. D., Tambe, S. S., Kulkarni, B. D., & Keshavamurty, R. N. (1997). Prediction of all India summer monsoon rainfall using error-back-propagation neural networks. Meteorology and Atmospheric Physics, 62, 225–240. doi:10.1007/BF01029704.

    Article  Google Scholar 

  • Ward, M. N., & Folland, C. K. (1991). Prediction of seasonal rainfall in the north nordeste of Brazil using eigenvectors of sea-surface temperature. International Journal of Climatology, 11, 711–743. doi:10.1002/joc.3370110703.

    Article  Google Scholar 

  • Zhang, H., & Casey, T. (2000). Verification of Categorical Probability Forecasts. Weather Forecast., 15, 80–89. doi:10.1175/1520-0434(2000)015<0080:VOCPF>2.0.CO;2.

    Article  Google Scholar 

Download references

Acknowledgements

This study is conducted as part of a research project entitled ‘Development and Application of Extended Range Weather Forecasting System for Climate Risk Management in Agriculture’, sponsored by the Department of Agriculture and Cooperation, Government of India. India Meteorological Department (IMD) is duly acknowledged for Gridded rainfall data. We are thankful to the IRI modeling and prediction groups (USA) led by D. Dewitt for making the GCMs available for users. The authors are also thankful to the anonymous reviewers for their valuable comments and suggestions by which the quality of the paper is enhanced. We also thank the NCAR Climate System Laboratory (CSL) program that partially sponsored the computations of GCMs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurjeet Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, A., Singh, G. & Mohanty, U.C. Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique. Pure Appl. Geophys. 175, 403–419 (2018). https://doi.org/10.1007/s00024-017-1652-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1652-5

Keywords

Navigation