Advertisement

Pure and Applied Geophysics

, Volume 174, Issue 10, pp 3765–3811 | Cite as

The Adriatic Sea: A Long-Standing Laboratory for Sea Level Studies

  • Ivica Vilibić
  • Jadranka Šepić
  • Mira Pasarić
  • Mirko Orlić
Article
Part of the following topical collections:
  1. Sea Level-2017

Abstract

The paper provides a comprehensive review of all aspects of Adriatic Sea level research covered by the literature. It discusses changes occurring over millennial timescales and documented by a variety of natural and man-made proxies and post-glacial rebound models; mean sea level changes occurring over centennial to annual timescales and measured by modern instruments; and daily and higher-frequency changes (with periods ranging from minutes to a day) that are contributing to sea level extremes and are relevant for present-day flooding of coastal areas. Special tribute is paid to the historic sea level studies that shaped modern sea level research in the Adriatic, followed by a discussion of existing in situ and remote sensing observing systems operating in the Adriatic area, operational forecasting systems for Adriatic storm surges, as well as warning systems for tsunamis and meteotsunamis. Projections and predictions of sea level and related hazards are also included in the review. Based on this review, open issues and research gaps in the Adriatic Sea level studies are identified, as well as the additional research efforts needed to fill the gaps. The Adriatic Sea, thus, remains a laboratory for coastal sea level studies for semi-enclosed, coastal and marginal seas in the world ocean.

Keywords

Adriatic Sea sea level various temporal and spatial scales operational systems open research issues 

Notes

Acknowledgements

This work has been supported by the Croatian Science Foundation through Projects 2831 (CARE) and UKF 25/15 (MESSI).

References

  1. Accerboni, E., Castelli, F., & Mosetti, F. (1971). Sull’uso di modelli matematici idrodinamici per lo studio dell’acqua alta a Venezia. Bollettino di Geofisica Teorica ed Applicata, 13, 18–35.Google Scholar
  2. Accerboni, E., & Manca, B. (1973). Storm surge forecasting in the Adriatic Sea by means of a two-dimensional hydrodynamical numerical model. Bollettino di Geofisica Teorica ed Applicata, 15, 3–22.Google Scholar
  3. Adloff, F., Somot, S., Sevault, F., Jorda, G., Aznar, R., Deque, M., et al. (2015). Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Climate Dynamics, 45, 2775–2802.CrossRefGoogle Scholar
  4. Airy, G. B. (1845). Tides and waves. Encyclopaedia Metropolitana, 5, 241–396.Google Scholar
  5. Ambraseys, N., & Synolakis, C. (2010). Tsunami catalogs for the Eastern Mediterranean, revisited. Journal of Earthquake Engineering, 14, 309–330.CrossRefGoogle Scholar
  6. Androulidakis, Y. S., Kombiadou, K. D., Makris, C. V., Baltikas, V. N., & Krestenitis, Y. N. (2015). Storm surges in the Mediterranean Sea: Variability and trends under future climatic conditions. Dynamics of Atmospheres and Oceans, 71, 56–82.CrossRefGoogle Scholar
  7. Antonioli, F., Anzidei, M., Lambeck, K., Auriemma, R., Gaddi, D., Furlani, S., et al. (2007). Sea-level change during the Holocene in Sardinia and in the northeastern Adriatic (central Mediterranean Sea) from archaeological and geomorphological data. Quaternary Science Reviews, 26, 2463–2486.CrossRefGoogle Scholar
  8. Antonioli, F., Ferranti, L., Fontana, A., Amorosi, A., Bondesan, A., Braitenberg, C., et al. (2009). Holocene relative sea-level changes and vertical movements along the Italian and Istrian coastlines. Quaternary International, 206, 102–133.CrossRefGoogle Scholar
  9. Antonioli, F., Lo Presti, V., Rovere, A., Ferranti, L., Anzidei, M., Furlani, S., et al. (2015). Tidal notches in Mediterranean Sea: A comprehensive analysis. Quaternary Science Reviews, 119, 66–84.CrossRefGoogle Scholar
  10. Arabelos, D. N., Papazachariou, D. Z., Contadakis, M. E., & Spatalas, S. D. (2011). A new tide model for the Mediterranean Sea based on altimetry and tide gauge assimilation. Ocean Science, 7, 429–444.CrossRefGoogle Scholar
  11. Bajo, M., Zampato, L., Umgiesser, G., Cucco, A., & Canestrelli, P. (2007). A finite element operational model for storm surge prediction in Venice. Estuarine, Coastal and Shelf Science, 75, 236–249.CrossRefGoogle Scholar
  12. Baker, I., Peterson, A., Brown, G., & McAlpine, C. (2012). Local government response to the impacts of climate change: An evaluation of local climate adaptation plans. Landscape and Urban Planning, 107, 127–136.CrossRefGoogle Scholar
  13. Bargagli, A., Carillo, A., Piscane, G., Ruti, P. M., Struglia, M. V., & Tartaglione, N. (2002). An integrated forecast system over the Mediterranean basin: Extreme surge prediction in the northern Adriatic Sea. Monthly Weather Review, 130, 1317–1332.CrossRefGoogle Scholar
  14. Barnett, T. P. (1984). The estimation of “global” sea level change: A problem of uniqueness. Journal of Geophysical Research, 89, 7980–7988.CrossRefGoogle Scholar
  15. Barriopedro, D., Garcia-Herrera, R., Lionello, P., & Pino, C. (2010). A discussion of the links between solar variability and high-storm-surge events in Venice. Journal of Geophysical Research, 115, D13101. doi: 10.1029/2009JD013114.CrossRefGoogle Scholar
  16. Bedosti, B. (1980). Considerazioni sul maremoto adriatico (tsunami) del 21.6.1978 (in Italian). Supplemento Bollettini Sismici Provv, 12–14–20, 2–17.Google Scholar
  17. Bell, J., Saunders, M. I., Leon, J. X., Mills, M., Kythreotis, A., Phinn, S., et al. (2014). Maps, laws and planning policy: Working with biophysical and spatial uncertainty in the case of sea level rise. Environmental Science & Policy, 44, 247–257.CrossRefGoogle Scholar
  18. Belušić, D., Grisogono, B., & Bencetić Klaić, Z. (2007a). Atmospheric origin of the devastating coupled air-sea event in the east Adriatic. Journal of Geophysical Research, 112, D17111. doi: 10.1029/2006JD008204.CrossRefGoogle Scholar
  19. Belušić, D., & Strelec Mahović, N. (2009). Detecting and following atmospheric disturbances with a potential to generate meteotsunamis in the Adriatic. Physics and Chemistry of the Earth, 34, 918–927.CrossRefGoogle Scholar
  20. Belušić, D., Žagar, M., & Grisogono, B. (2007b). Numerical simulation of pulsations in the bora wind. Quarterly Journal of the Royal Meteorological Society, 133, 1371–1388.CrossRefGoogle Scholar
  21. Bertotti, L., Bidlot, J.-R., Buizza, R., Cavaleri, L., & Janousek, M. (2011). Deterministic and ensemble-based prediction of Adriatic Sea sirocco storms leading to ‘acqua alta’ in Venice. Quarterly Journal of the Royal Meteorological Society, 137, 1446–1466.CrossRefGoogle Scholar
  22. Bilajbegović, A., & Marchesini, C. (1991). Yugoslav vertical datums and preliminary connections of Yugoslav, Austrian and Italian levelling networks (in Croatian). Geodetski list, 7(9), 233–248.Google Scholar
  23. Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geoscience, 2, 488–491.CrossRefGoogle Scholar
  24. Bock, Y., Wdowinski, S., Ferretti, A., Novali, F., & Fumagalli, A. (2012). Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar. Geochemistry, Geophysics, Geosystems, 13, Q03023. doi: 10.1029/2011GC003976.Google Scholar
  25. Bondesan, M., Castiglioni, G. B., Elmi, C., Gabbianelli, G., Marocco, R., Pirazzoli, P. A., et al. (1995). Coastal areas at risk from storm surges and sea-level rise in northeastern Italy. Journal of Coastal Research, 11, 1354–1379.Google Scholar
  26. Book, J. W., Perkins, H., & Wimbush, M. (2009). North Adriatic tides: Observations, variational data assimilation modeling, and linear tide dynamics. Geofizika, 26, 115–143.Google Scholar
  27. Bozzi Zadro, M., & Poretti, G. (1971). Analisi degli spettri complessi delle maree marine registrate a Trieste. Geofisica e Meteorologia, 20, 83–88.Google Scholar
  28. Bregant, K., Sušnik, M., Strojan, I., & Shaw, A. G. P. (2005). Sea level variability at Adriatic coast and its relationship to atmospheric forcing. Annales Geophysicae, 23, 1997–2010.CrossRefGoogle Scholar
  29. Buble, G., Bennett, R. A., & Hreinsdóttir, S. (2010). Tide gauge and GPS measurements of crustal motion and sea level rise along the eastern margin of Adria. Journal of Geophysical Research, 115, B02404. doi: 10.1029/2008JB006155.CrossRefGoogle Scholar
  30. Bučić, G. (1861). Hoehe des Meeresspiegels und des Luftdruckes. Uebersichten der Witterung in Oesterreich und einigen Auswaertigen Stationen im Jahre, 1860, 47–48.Google Scholar
  31. Calafat, F. M., Avgoustoglou, E., Jorda, G., Flocas, H., Zodiatis, G., Tsimplis, M. N., et al. (2014). The ability of a barotropic model to simulate sea level extremes of meteorological origin in the Mediterranean Sea, including those caused by explosive cyclones. Journal of Geophysical Research, 119, 7840–7853.Google Scholar
  32. Calafat, F. M., & Gomis, D. (2009). Reconstruction of Mediterranean sea level fields for the period 1945–2000. Global and Planetary Change, 66, 225–234.CrossRefGoogle Scholar
  33. Calafat, F. M., Jordà, G., Marcos, M., & Gomis, D. (2012). Comparison of Mediterranean sea level variability as given by three baroclinic models. Journal of Geophysical Research, 117, C02009. doi: 10.1029/2011JC007277.Google Scholar
  34. Caloi, P. (1938). Sesse dell’alto Adriatico con particolare riguardo al Golfo di Trieste. Memorie, R. Comitato Talassografico Italiano, 247, 1–39.Google Scholar
  35. Camuffo, D., & Sturaro, G. (2003). Sixty-CM submersion of Venice discovered thanks to Canaletto’s paintings. Climatic Change, 58, 333–343.CrossRefGoogle Scholar
  36. Candela, J. (1991). The Gibraltar Strait and its role in the dynamics of the Mediterranean Sea. Dynamics of Atmosphere and Oceans, 15, 267–299.CrossRefGoogle Scholar
  37. Carillo, A., Sannino, G., Artale, V., Ruti, P. M., Calmanti, S., & Dell’Aquila, A. (2012). Steric sea level rise over the Mediterranean Sea: Present climate and scenario simulations. Climate Dynamics, 39, 2167–2184.CrossRefGoogle Scholar
  38. Cavaleri, L., Bertotti, L., Buizza, R., Buzzi, A., Masato, V., Umgiesser, G., et al. (2010). Predictability of extreme meteo-oceanographic events in the Adriatic Sea. Quarterly Journal of the Royal Meteorological Society, 136, 400–413.Google Scholar
  39. Cazenave, A., Dieng, H. B., Meyssignac, B., von Schuckmann, K., Decharme, B., & Berthier, E. (2014). The rate of sea-level rise. Nature Climate Change, 4, 358–361.CrossRefGoogle Scholar
  40. Cazenave, A., & Le Cozannet, G. (2014). Sea level rise and its coastal impacts. Earths Future, 2, 15–34.CrossRefGoogle Scholar
  41. Cerovečki, I., & Orlić, M. (1989). Modeling residual sea levels of the Bakar Bay (in Croatian). Geofizika, 6, 37–57.Google Scholar
  42. Cerovečki, I., Orlić, M., & Hendershott, M. C. (1997). Adriatic seiche decay and energy loss to the Mediterranean. Deep-Sea Research I, 44, 2007–2029.CrossRefGoogle Scholar
  43. Chavanne, C., Janeković, I., Flament, P., Poulain, P.-M., Kuzmić, M., & Gurgel, K.-W. (2007). Tidal currents in the northwestern Adriatic: High-frequency radio observations and numerical model predictions. Journal of Geophysical Research, 112, C03S21. doi: 10.1029/2006JC003523.CrossRefGoogle Scholar
  44. Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., & Unnikrishnan, A. S. (2013). Sea level change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  45. Churchill, D. D., Houston, S. H., & Bond, N. A. (1995). The Daytona Beach wave of 3–4 July 1992: A shallow water gravity wave forced by a propagating squall line. Bulletin of the American Meteorological Society, 76, 21–32.CrossRefGoogle Scholar
  46. Conte, D., & Lionello, P. (2013). Characteristics of large positive and negative surges in the Mediterranean Sea and their attenuation in future climate scenarios. Global and Planetary Change, 111, 159–173.CrossRefGoogle Scholar
  47. Cushman-Roisin, B., & Naimie, C. E. (2002). A 3d finite-element model of the Adriatic tides. Journal of Marine Systems, 37, 279–297.CrossRefGoogle Scholar
  48. Cushman-Roisin, B., Willmott, A. J., & Biggs, N. R. T. (2005). Influence of stratification on decaying surface seiche modes. Continental Shelf Research, 25, 227–242.CrossRefGoogle Scholar
  49. Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., et al. (2008). A place-based model for understanding community resilience to natural disasters. Global Environmental Change – Human and Policy Dimensions, 18, 598–606.CrossRefGoogle Scholar
  50. De Vries, H., Breton, M., De Mulder, T., Krestenitis, Y., Ozer, J., Proctor, R., et al. (1995). A comparison of 2D storm surge models applied to three shallow European seas. Environmental Software, 10, 23–42.CrossRefGoogle Scholar
  51. De Zolt, S., Lionello, P., Nuhu, A., & Tomasin, A. (2006). The disastrous storm of 4 November 1966 on Italy. Natural Hazards and Earth System Sciences, 6, 861–879.CrossRefGoogle Scholar
  52. Defant, A. (1911). Ueber die Periodendauer der Eigenschwingungen des Adriatischen Meeres. Annalen der Hydrographie und Maritimen Meteorologie, 39, 119–130.Google Scholar
  53. Defant, A. (1961). Physical oceanography (Vol. II). Oxford: Pergamon Press.Google Scholar
  54. Di Donato, G., Negredo, A. M., Sabadini, R., & Vermerrsen, L. L. A. (1999). Multiple processes causing sea-level rise in the Central Mediterranean. Geophysical Research Letters, 26, 1769–1772.CrossRefGoogle Scholar
  55. Donati, V. (1758). Essai sur l’Histoire Naturelle de la Mer Adriatique. La Haye: Pierre de Hondt.Google Scholar
  56. Douglas, B. C. (1992). Global sea level acceleration. Journal of Geophysical Research, 97(C8), 12699–12706.CrossRefGoogle Scholar
  57. Douglas, B. C. (1997). Global sea level rise: A redetermination. Surveys in Geophysics, 18, 279–292.CrossRefGoogle Scholar
  58. Dovier, A., Manca, B., & Mosetti, F. (1974). I periodi di oscillazione del Golfo di Trieste calcolati con un nuovo metodo. Rivista Italiana di Geofisica, 23, 64–70.Google Scholar
  59. Dubois, C., Somot, S., Calmanti, S., Carillo, A., Déqué, M., Dell’Aquilla, A., et al. (2012). Future projections of the surface heat and water budgets of the Mediterranean Sea in an ensemble of coupled atmosphere–ocean regional climate models. Climate Dynamics, 39, 1859–1884.CrossRefGoogle Scholar
  60. Dunić, N., Vilibić, I., Šepić, J., Somot, S., & Sevault, F. (2016). Dense water formation and BiOS-induced variability in the Adriatic Sea simulated using an ocean regional circulation model. Climate Dynamics, in press. doi: 10.1007/s00382-016-3310-5.Google Scholar
  61. Dusterhus, A., Rovere, A., Carlson, A. E., Horton, B. P., Klemann, V., Tarasov, L., et al. (2016). Palaeo-sea-level and palaeo-ice-sheet databases: Problems, strategies, and perspectives. Climate of the Past, 12, 911–921.CrossRefGoogle Scholar
  62. Emery, K. O., & Aubrey, D. G. (1991). Sea levels, land levels, and tide gauges. New York: Springer.CrossRefGoogle Scholar
  63. Enzi, S., & Camuffo, D. (1995). Documentary sources of the sea surges in Venice from AD 787 to 1867. Natural Hazards, 12, 225–287.Google Scholar
  64. Faivre, S., Bakran-Petricioli, T., & Horvatinčić, N. (2010). Relative sea-level change during the Late Holocene on the Island of Vis (Croatia)—Issa Harbour archaeological site. Geodinamica Acta, 23, 209–223.CrossRefGoogle Scholar
  65. Faivre, S., Bakran-Petricioli, T., Horvatinčić, N., & Sironić, A. (2013). Distinct phases of relative sea level changes in the central Adriatic during the last 1500 years—influence of climatic variations? Palaeogeography, Palaeoclimatology, Palaeoecology, 369, 163–174.CrossRefGoogle Scholar
  66. Faivre, S., Fouache, E., Ghilardi, M., Antonioli, F., Furlani, S., & Kovačić, V. (2011). Relative sea level change in western Istria (Croatia) during the last millennium. Quaternary International, 232, 132–143.CrossRefGoogle Scholar
  67. Feng, X. B., Tsimplis, M. N., Marcos, M., Calafat, F. M., Zheng, J. H., Jorda, G., et al. (2015). Spatial and temporal variations of the seasonal sea level cycle in the northwest Pacific. Journal of Geophysical Research, 120, 7091–7112.Google Scholar
  68. Feng, H., & Vandemark, D. (2011). Altimeter data evaluation in the coastal Gulf of Maine and Mid-Atlantic Bight regions. Marine Geodesy, 34, 340–363.CrossRefGoogle Scholar
  69. Fenoglio-Marc, L., Braitenberg, C., & Tunini, L. (2012). Sea level variability and trends in the Adriatic Sea in 1993–2008 from tide gauges and satellite altimetry. Physics and Chemistry of the Earth, 40–41, 47–58.CrossRefGoogle Scholar
  70. Fenoglio-Marc, L., Kusche, J., & Becker, M. (2006). Mass variation in the Mediterranean Sea from GRACE and its validation by altimetry, steric and hydrologic fields. Geophysical Research Letters, 33, L19606. doi: 10.1029/2006GL026851.CrossRefGoogle Scholar
  71. Ferla, M., Cordella, M., Michielli, L., & Rusconi, L. (2007). Long-term variations on sea level and tidal regime in the lagoon of Venice. Estuarine, Coastal and Shelf Science, 75, 214–222.CrossRefGoogle Scholar
  72. Flemming, N. C. (1969). Archaeological evidence for eustatic changes of sea level and earth movements in the Western Mediterranean in the last 2000 years. Geological Society of America Special Paper, 109, 1–125.CrossRefGoogle Scholar
  73. Florido, E., Auriemma, R., Faivre, S., Radić Rossi, I., Antonioli, F., Furlani, S., et al. (2011). Istrian and Dalmatian fishtanks as sea-level markers. Quaternary International, 232, 105–113.CrossRefGoogle Scholar
  74. Fortis, A. (1774). Viaggio in Dalmazia. Venezia: A. Milocco.Google Scholar
  75. Fouache, E., Faivre, S., Gluščević, S., Kovačić, V., Tassaux, F., & Dufaure, J. (2006). Evolution on the Croatian shore line between Poreč and Split over the past 2000 years. Archaeologia Maritima Mediterranea—An International Journal on Underwater Archaeology, 2, 115–134.Google Scholar
  76. Fukumori, I., Menemenlis, D., & Lee, T. (2007). A near-uniform basin-wide sea level fluctuation of the Mediterranean Sea. Journal of Physical Oceanography, 37, 338–358.CrossRefGoogle Scholar
  77. Furlani, S., Biolchi, S., Cucchi, F., Antonioli, F., Busetti, M., & Melis, R. (2011). Tectonic effects on Late Holocene sea level changes in the Gulf of Trieste (NE Adriatic Sea, Italy). Quaternary International, 232, 144–157.CrossRefGoogle Scholar
  78. Gačić, M., Borzelli, G. L. E., Civitarese, G., Cardin, V., & Yari, S. (2010). Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophysical Research Letters, 37, L09608. doi: 10.1029/2010GL043216.CrossRefGoogle Scholar
  79. Gaertner, M. A., Jacob, D., Gil, V., Domínguez, M., Padorno, E., Sánchez, E., et al. (2007). Tropical cyclones over the Mediterranean Sea in climate change simulations. Geophysical Research Letters, 34, L14711. doi: 10.1029/2007GL029977.CrossRefGoogle Scholar
  80. Galassi, G., & Spada, G. (2014). Sea-level rise in the Mediterranean Sea by 2050: Roles of terrestrial ice melt, steric effects and glacial isostatic adjustment. Global and Planetary Change, 123, 55–66.CrossRefGoogle Scholar
  81. Galilei, G. (1632). Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano. Fiorenza: G. B. Landini.Google Scholar
  82. García Lafuente, J., Alvarez Fanjul, E., Vargas, J. M., & Ratsimandresy, A. W. (2002). Subinertial variability in the flow through the Strait of Gibraltar. Journal of Geophysical Research, 107(C10), 3168. doi: 10.1029/2001JC001104.CrossRefGoogle Scholar
  83. García, D., Vigo, I., Chao, B. F., & Martínez, M. C. (2007). Vertical crustal motion along the Mediterranean and Black Sea coast derived from ocean altimetry and tide gauge data. Pure and Applied Geophysics, 164, 851–863.CrossRefGoogle Scholar
  84. Garrett, C. (1983). Variable sea level and strait flows in the Mediterranean: A theoretical study of the response to meteorological forcing. Oceanologica Acta, 6, 79–87.Google Scholar
  85. Garrett, C., & Majaess, F. (1984). Nonisostatic response of sea level to atmospheric pressure in the eastern Mediterranean. Journal of Physical Oceanography, 14, 656–665.CrossRefGoogle Scholar
  86. Gill, A. E., & Niiler, P. P. (1973). The theory of the seasonal variability in the ocean. Deep-Sea Research, 20, 141–177.Google Scholar
  87. Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33, L08707.CrossRefGoogle Scholar
  88. Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63, 90–104.CrossRefGoogle Scholar
  89. Godin, G., & Trotti, L. (1975). Trieste, water levels 1952–1971: A study of the tide, mean level and seiche activity. Fisheries and Marine Service in Ottawa, Miscellaneous Special Publication, 28, 1–24.Google Scholar
  90. Goldberg, J., & Kempni, K. (1937). Ueber die Schwingungen der Bucht von Bakar und das allgemeine Problem der Seiches von Buchten. Bulletin International de l’Académie Yougoslave des Sciences et des Beaux-Arts, Classe des Sciences Mathématiques et Naturelles, 31, 74–136.Google Scholar
  91. Gomis, D., Ruiz, S., Sotillo, M. G., Álvarez-Fanjul, E., & Terradas, J. (2008). Low frequency Mediterranean sea level variability: The contribution of atmospheric pressure and wind. Global and Planetary Change, 63, 215–229.CrossRefGoogle Scholar
  92. Gomis, D., Tsimplis, M., Marcos, M., Fenoglio-Marc, L., Pérez, B., Raicich, F., et al. (2012). Mediterranean sea-level variability and trends. In P. Lionello (Ed.), The climate of the Mediterranean Region: From past to the future (pp. 257–299). Amsterdam: Elsevier.CrossRefGoogle Scholar
  93. Gratzl, A. (1891). Ueber die durch Boeen verursachten stehenden Wellen (Seiches) im Hafen von Pola und in der Bucht von Triest. Meteorologische Zeitschrift, 8, 309–310.Google Scholar
  94. Grisogono, B., & Belušić, D. (2009). A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind. Tellus A, 61, 1–16.CrossRefGoogle Scholar
  95. Grund, A. (1907). Die Entstehung und Geschichte des Adriatischen Meeres. Geographischer Jahresbericht aus Oesterreich, 7, 1–14.Google Scholar
  96. Gualdi, S., Somot, S., Wilhelm, M., Castellari, S., Déqué, M., Adani, M., Artale, V., Bellucci, A., Breitgand, J.S., Carillo, A., Cornes, R., Dell’Aquila, A., Dubois, C., Efthymiadis, D., Elizalde, A., Gimeno, L., Goodess, C.M., Harzallah, A., Krichak, S.O., Kuglitsch, F.G., Leckebusch, G.C., L’Hévéder, B., Li, L., Lionello, P., Luterbacher, J., Mariotti, A., Navarra, A., Nieto, R., Nissen, K.M., Oddo, P., Ruti, P., Sanna, A., Sannino, G., Scoccimarro, E., Sevault, F., Struglia, M.V., Toreti, A., Ulbrich, U., & Xoplaki, E. (2013). Future climate projections. In A. Navarra, & L. Tubiana, (Eds.), Regional assessment of the climate change in the Mediterranean: Air, sea and precipitation and water, Advances in Global Change Research, Vol. 50 (pp. 53–118). Heidelberg: Springer.Google Scholar
  97. Guidoboni, E., & Tinti, S. (1988). A review of the historical 1627 tsunami in the Southern Adriatic. Science of Tsunami Hazards, 1, 11–16.Google Scholar
  98. Hendershott, M. C., & Speranza, A. (1971). Co-oscillating tides in long, narrow bays; the Taylor problem revisited. Deep Sea Research, 18, 959–980.Google Scholar
  99. Herak, M., Orlić, M., & Kunovec-Varga, M. (2001). Did the Makarska earthquake of 1962 generate a tsunami in the central Adriatic archipelago? Journal of Geodynamics, 31, 71–86.CrossRefGoogle Scholar
  100. Hibiya, T., & Kajiura, K. (1982). Origin of the Abiki phenomenon (a kind of seiche) in Nagasaki Bay. Journal of the Oceanographic Society of Japan, 38, 172–182.CrossRefGoogle Scholar
  101. Hinkel, J., Jaeger, C., Nicholls, R. J., Lowe, J., Renn, O., & Peijun, S. (2015). Sea-level rise scenarios and coastal risk management. Nature Climate Change, 5, 188–190.CrossRefGoogle Scholar
  102. Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tole, R. S. J., et al. (2014). Coastal flood damage and adaptation costs under 21st century sea-level rise. Proceedings of the National Academy of Sciences, 111, 3292–3297.CrossRefGoogle Scholar
  103. Hodžić, M. (1979/1980). Occurrences of exceptional sea-level oscillations in the Vela Luka Bay (in Croatian). Priroda, 68, 52–53.Google Scholar
  104. Janeković, I., Bobanović, J., & Kuzmić, M. (2003). The Adriatic Sea M2 and K1 tides by 3D model and data assimilation. Estuarine, Coastal and Shelf Science, 57, 873–885.CrossRefGoogle Scholar
  105. Janeković, I., & Kuzmić, M. (2005). Numerical simulation of the Adriatic Sea principal tidal constituents. Annales Geophysicae, 23, 1–12.CrossRefGoogle Scholar
  106. Janeković, I., Mihanović, H., Vilibić, I., & Tudor, M. (2014). Extreme cooling and dense water formation estimates in open and coastal regions of the Adriatic Sea during the winter of 2012. Journal of Geophysical Research, 119, 3200–3218.Google Scholar
  107. Jansà, A., Monserrat, S., & Gomis, D. (2007). The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami. Advances in Geosciences, 12, 1–4.CrossRefGoogle Scholar
  108. JCOMM (2010). Decision Matrix for the Mediterranean, Accessed on Nov 27, 2016 from http://www.jcomm.info/index.php?option=com_oe&task=viewDocumentRecord&docID=6422
  109. Jönsson, B., Döös, K., Nycander, J., & Lundberg, P. (2008). Standing waves in the Gulf of Finland and their relationship to the basin-wide Baltic seiches. Journal of Geophysical Research, 113, C03004. doi: 10.1029/2006JC003862.Google Scholar
  110. Joó, I., Csáti, E., Jovanović, P., Popescu, M., Somov, V. I., Thurm, H., et al. (1981). Recent vertical crustal movements of the Carpatho-Balkan region. Tectonophysics, 71, 41–52.CrossRefGoogle Scholar
  111. Jordà, G., & Gomis, D. (2013). On the interpretation of the steric and mass components of sea level variability: The case of the Mediterranean basin. Journal of Geophysical Research, 118, 953–963.Google Scholar
  112. Jordà, G., Gomis, D., Álvarez-Fanjul, E., & Somot, S. (2012). Atmospheric contribution to Mediterranean and nearby Atlantic sea level variability under different climate change scenarios. Global and Planetary Change, 80–81, 198–214.CrossRefGoogle Scholar
  113. Karabeg, M., & Orlić, M. (1982). The influence of air pressure on sea level in the North Adriatic—a frequency-domain approach. Acta Adriatica, 23, 21–27.Google Scholar
  114. Kasumović, M. (1958). Ueber die Wirkung des Luftdrucks und des Windes auf die Wasserstandschwankungen in der Adria (in Kroatisch). Hidrografski godišnjak, 1956(1957), 107–121.Google Scholar
  115. Kasumović, M. (1963). Langperiodische Freie Schwingungen in der Adria (in Kroatisch). Rasprave odjela za matematičke, fizičke i tehničke nauke JAZU, 2(4), 121–166.Google Scholar
  116. Kasumović, M. (1968). Histoire du développement de la théorie des marées dans la mer Adriatique. Bulletin, Institut océanographique, Monaco, 2, 55–62.Google Scholar
  117. Kesslitz, W. (1910). Das Gezeitenphaenomen im Hafen von Pola. Mitteilungen aus dem Gebiete des Seewesens, 38, 445–608.Google Scholar
  118. Kesslitz, W. (1911). Die Sturmflut am 15. und 16. November 1910 in Pola. Mitteilungen aus dem Gebiete des Seewesens, 39, 157–163.Google Scholar
  119. Kesslitz, W. (1919). Die Gezeitenerscheinungen in der Adria, I. Teil, Die Beobachtungsergebnisse der Flutstationen. Denkschrifte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 96, 175–275.Google Scholar
  120. King, M. A., Keshin, M., Whitehouse, P. L., Thomas, I. D., Milne, G., & Riva, R. E. M. (2012). Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement. Geophysical Research Letters, 39, L14604. doi: 10.1029/2012GL052348.CrossRefGoogle Scholar
  121. Kuzmić, M., Grisogono, B., Li, X. M., & Lehner, S. (2015). Examining deep and shallow Adriatic bora events. Quarterly Journal of the Royal Meteorological Society, 141, 3434–3438.CrossRefGoogle Scholar
  122. Lambeck, K., Antonioli, F., Anzidei, M., Ferranti, L., Leoni, G., Scicchitano, G., et al. (2011). Sea level change along the Italian coast during the Holocene and projections for the future. Quaternary International, 232, 250–257.CrossRefGoogle Scholar
  123. Lambeck, K., Antonioli, F., Purcell, A., & Silenzi, S. (2004). Sea level change along the Italian coast for the past 10,000 yrs. Quaternary Science Reviews, 23, 1567–1598.CrossRefGoogle Scholar
  124. Lambeck, K., & Purcell, A. (2005). Sea-level change in the Mediterranean Sea since the LGM: Model predictions for tectonically stable areas. Quaternary Science Reviews, 24, 1969–1988.CrossRefGoogle Scholar
  125. Landerer, F. W., & Volkov, D. L. (2013). The anatomy of recent large sea level fluctuations in the Mediterranean Sea. Geophysical Research Letters, 40, 553–557.CrossRefGoogle Scholar
  126. Larnicol, G., Ayoub, N., & Le Traon, P. Y. (2002). Major changes in Mediterranean Sea level variability from 7 years of TOPEX/Poseidon and ERS-1/2 data. Journal of Marine Systems, 33(34), 63–89.CrossRefGoogle Scholar
  127. Lascaratos, A., & Gačić, M. (1990). Low-frequency sea level variability in the northeastern Mediterranean. Journal of Physical Oceanography, 20, 522–533.CrossRefGoogle Scholar
  128. Le Traon, P.-Y., & Gauzelin, P. (1997). Response of the Mediterranean mean sea level to atmospheric pressure forcing. Journal of Geophysical Research, 102(C1), 973–984.CrossRefGoogle Scholar
  129. Leder, N., & Orlić, M. (2004). Fundamental Adriatic seiche recorded by current meters. Annales Geophysicae, 22, 1449–1464.CrossRefGoogle Scholar
  130. Levermann, A., Griesel, A., Hofmann, M., Montoya, M., & Rahmstorf, S. (2005). Dynamic sea level changes following changes in the thermohaline circulation. Climate Dynamics, 24, 347–354.CrossRefGoogle Scholar
  131. Li, C., von Storch, J. S., & Marotzke, J. (2013). Deep-ocean heat uptake and equilibrium climate response. Climate Dynamics, 40, 1071–1086.CrossRefGoogle Scholar
  132. Lionello, P., Cavaleri, L., Nissen, K. M., Pino, C., Raicich, F., & Ulbrich, U. (2012a). Severe marine storms in the Northern Adriatic: Characteristics and trends. Physics and Chemistry of the Earth, 40–41, 93–105.CrossRefGoogle Scholar
  133. Lionello, P., Galati, M. B., & Elvini, E. (2012b). Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral. Physics and Chemistry of the Earth, 40–41, 86–92.CrossRefGoogle Scholar
  134. Lionello, P., Mufato, R., & Tomasin, A. (2005). Sensitivity of free and forced oscillations of the Adriatic Sea to sea level rise. Climate Change, 29, 23–39.Google Scholar
  135. Lionello, P., Sanna, A., Elvini, E., & Mufato, R. (2006). A data assimilation procedure for operational prediction of storm surge in the northern Adriatic Sea. Continental Shelf Research, 26, 539–553.CrossRefGoogle Scholar
  136. Lionello, P., Zampato, L., Malguzzi, P., Tomasin, A., & Bergamasco, A. (1998). On the correct surface stress for the prediction of the wind wave field and the storm surge in the Northern Adriatic Sea. Il Nuovo Cimento C, 21, 515–532.Google Scholar
  137. Lo Presti, V., Antonioli, F., Auriemma, R., Ronchitelli, A., Scicchitano, G., Spampinato, C. R., et al. (2014). Millstone coastal quarries of the Mediterranean: A new class of sea level indicator. Quaternary International, 332, 126–142.CrossRefGoogle Scholar
  138. Lombard, A., Garcia, D., Ramillien, G., Cazenave, A., Biancale, R., Lemome, J. M., et al. (2007). Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth and Planetary Science Letters, 254, 194–202.CrossRefGoogle Scholar
  139. Lončar, G., Carević, D., & Paladin, M. (2010). The (im)possibility of reducing the meteotsunami amplitude by constructing protective breakwaters. Tehnički vjesnik—Technical Gazette, 17, 217–222.Google Scholar
  140. Lorbacher, K., Dengg, J., Boning, C. W., & Biastoch, A. (2010). Regional patterns of sea level change related to interannual variability and multidecadal trends in the Atlantic meridional overturning circulation. Journal of Climate, 23, 4243–4254.CrossRefGoogle Scholar
  141. Lorbacher, K., Marsland, S. J., Church, J. A., Griffies, S. M., & Stammer, D. (2012). Rapid barotrophic sea-level rise from ice-sheet melting scenarios. Journal of Geophysical Research, 117, C06003.CrossRefGoogle Scholar
  142. Lorenz, J. R. (1863). Physicalische Verhaeltnisse und Vertheilung der Organismen im Quarnerischen Golfe. Wien: Hof- und Staatsdruckerei.Google Scholar
  143. Lorito, S., Selva, J., Basili, R., Romano, F., Tiberti, M. M., & Piatanesi, A. (2015). Probabilistic hazard for seismically induced tsunamis: Accuracy and feasibility of inundation maps. Geophysical Journal International, 200, 574–588.CrossRefGoogle Scholar
  144. Lozano, C. J., & Candela, J. (1995). The M2 tide in the Mediterranean Sea: Dynamic analysis and data assimilation. Oceanologica Acta, 18, 419–441.Google Scholar
  145. Malačič, V., & Viezzoli, D. (2000). Tides in the northern Adriatic Sea—the Gulf of Trieste. Il Nuovo Cimento C, 23, 365–382.Google Scholar
  146. Malačič, V., Viezzoli, D., & Cushman-Roisin, B. (2000). Tidal dynamics in the northern Adriatic Sea. Journal of Geophysical Research, 105, 26265–26280.CrossRefGoogle Scholar
  147. Manca, B., Mosetti, F., & Zennaro, P. (1974). Analisi spettrale delle sesse dell’Adriatico. Bolletino di Geofisica Teorica ed Applicata, 16, 51–60.Google Scholar
  148. Maramai, A., Brizuela, B., & Graziani, L. (2014). The Euro-Mediterranean tsunami catalogue. Annals of Geophysics, 57, S0435. doi: 10.4401/ag-6437.Google Scholar
  149. Maramai, A., Graziani, L., & Tinti, S. (2007). Investigation on tsunami effects in the central Adriatic Sea during the last century—a contribution. Natural Hazards and Earth System Sciences, 7, 15–19.CrossRefGoogle Scholar
  150. Marcos, M., Jordà, G., Gomis, D., & Pérez, B. (2011). Changes in storm surges in southern Europe from a regional model under climate change scenarios. Global and Planetary Change, 77, 116–128.CrossRefGoogle Scholar
  151. Marcos, M., Monserrat, S., Medina, R., Orfila, A., & Olabarrieta, M. (2009a). External forcing of meteorological tsunamis at the coast of the Balearic Islands. Physics and Chemistry of the Earth, 34, 938–947.CrossRefGoogle Scholar
  152. Marcos, M., & Tsimplis, M. N. (2007). Variations of the seasonal sea level cycle in southern Europe. Journal of Geophysical Research, 112, C12011. doi: 10.1029/2006JC004049.CrossRefGoogle Scholar
  153. Marcos, M., & Tsimplis, M. N. (2008). Comparison of AOGCMs in the Mediterranean Sea during the 21st century. Journal of Geophysical Research, 113, C12028. doi: 10.1029/2008JC004820.CrossRefGoogle Scholar
  154. Marcos, M., Tsimplis, M. N., & Shaw, A. G. P. (2009b). Sea level extremes in southern Europe. Journal of Geophysical Research. doi: 10.1029/2008JC004912.Google Scholar
  155. Marriner, M., Morhange, C., Faivre, S., Flaux, C., Vacchi, M., Miko, S., et al. (2014). Post-Roman sea-level changes on Pag Island (Adriatic Sea): dating Croatia’s “enigmatic” coastal notch? Geomorphology, 221, 83–94.CrossRefGoogle Scholar
  156. Marzocchi, W., & Mulargia, F. (1996). Scale analysis to sort the different causes of mean sea level changes: An application to the northern Adriatic Sea. Geophysical Research Letters, 23, 1119–1122.CrossRefGoogle Scholar
  157. Masina, M., & Lamberti, A. (2013). A nonstationary analysis for the Northern Adriatic extreme sea levels. Journal of Geophysical Research, 118, 3999–4016.Google Scholar
  158. Massalin, A., Zampato, L., Papa, A., & Canestrelli, P. (2007). Data monitoring and sea level forecasting in the Venice Lagoon: The ICPSM’s activity. Bollettino di Geofisica Teorica ed Applicata, 48, 241–257.Google Scholar
  159. Mawdsley, R. J., Haigh, I. D., & Wells, N. C. (2015). Global secular changes in different tidal high water, low water and range levels. Earths Future, 3, 66–81.CrossRefGoogle Scholar
  160. Međugorac, I., Pasarić, M., & Orlić, M. (2015). Severe flooding along the eastern Adriatic coast: The case of 1 December 2008. Ocean Dynamics, 65, 817–830.CrossRefGoogle Scholar
  161. Mel, R., & Lionello, P. (2014a). Storm surge ensemble prediction for the city of Venice. Weather and Forecasting, 29, 1044–1057.CrossRefGoogle Scholar
  162. Mel, R., & Lionello, P. (2014b). Verification of an ensemble prediction system for storm surge forecast in the Adriatic Sea. Ocean Dynamics, 64, 1803–1814.CrossRefGoogle Scholar
  163. Mel, R., & Lionello, P. (2016). Probabilistic dressing of a storm surge prediction in the Adriatic Sea. Advances in Meteorology, 2016, 3764519. doi: 10.1155/2016/3764519.CrossRefGoogle Scholar
  164. Mel, R., Sterl, A., & Lionello, P. (2013). High resolution climate projection of storm surge at the Venetian coast. Natural Hazards and Earth System Sciences, 13, 1135–1142.CrossRefGoogle Scholar
  165. Mel, R., Viero, D. P., Carniello, L., Defina, A., & D’Alpaos, L. (2014). Simplified methods for real-time prediction of storm surge uncertainty: The city of Venice case study. Advances in Water Resources, 71, 177–185.CrossRefGoogle Scholar
  166. Michelato, A., Mosetti, F., & Purga, N. (1985). Sea level oscillations in the Adriatic Sea computed by mathematical models. Bolletino di Geofisica Teorica ed Applicata, 3, 57–77.Google Scholar
  167. Michelato, A., Mosetti, R., & Viezzoli, D. (1983). Statistical forecasting of storm surges—An application to the Lagoon of Venice. Bollettino di Oceanologia Teorica ed Applicata, 1, 67–76.Google Scholar
  168. Mikolajewicz, U. (2011). Modeling Mediterranean ocean climate of the Last Glacial Maximum. Climate of the Past, 7, 161–180.CrossRefGoogle Scholar
  169. Milojević, B. Ž. (1926). The Murter Island (in Serbian). Glasnik geografskog društva, 12, 65–74.Google Scholar
  170. Minisini, D., Trincardi, F., & Asioli, A. (2006). Evidence of slope instability in the Southwestern Adriatic Margin. Natural Hazards and Earth System Sciences, 6, 1–20.CrossRefGoogle Scholar
  171. Monserrat, S., Vilibić, I., & Rabinovich, A. B. (2006). Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Natural Hazards and Earth System Sciences, 6, 1035–1051.CrossRefGoogle Scholar
  172. Mosetti, F. (1961). Sulla tendenza secolare del livello medio marino a Trieste. Atti dell’Istituto Veneto di Scienze, Lettere ed Arti, Classe di Scienze Matematiche e Naturali, 119, 425–434.Google Scholar
  173. Mosetti, F., & Bartole, R. (1974). Esame dell’effetto del vento sui sollevamenti di livello dell’Adriatico settentrionale. Rivista Italiana di Geofisica, 23, 71–74.Google Scholar
  174. Mosetti, F., Crisciani, F., & Ferraro, S. (1989). On the relation between sea level and air temperature. Bollettino di oceanologia teorica ed applicata, 7, 263–272.Google Scholar
  175. Mosetti, F., & Purga, N. (1983). Free oscillations of the Adriatic Sea. Comparison and discussion of some results by old models and recent experimental investigations. Bolletino di Oceanologia Teorica ed Applicata, 1, 277–310.Google Scholar
  176. Nicholls, R. J., & Cazenave, A. (2010). Sea-level rise and its impact on coastal zones. Science, 328, 1517–1520.CrossRefGoogle Scholar
  177. Nicolich, R. (2010). Geophysical investigation of the crust of the Upper Adriatic and neighbouring chains. Rendiconti, Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 21(Suppl. 1), S15–S30.CrossRefGoogle Scholar
  178. Okal, E. A. (2015). The quest for wisdom: Lessons from 17 tsunamis, 2004–2014. Philosophical Transactions of the Royal Society A, 373, 20140370. doi: 10.1098/rsta.2014.0370.CrossRefGoogle Scholar
  179. Okihiro, M., Guza, R. T., & Seymour, R. J. (1993). Excitation of seiche observed in a small harbour. Journal of Geophysical Research, 98, 18201–18211.CrossRefGoogle Scholar
  180. Orlić, M. (1980). About a possible occurrence of the Proudman resonance in the Adriatic. Thalassia Jugoslavica, 16, 79–88.Google Scholar
  181. Orlić, M. (1983). On the frictionless influence of planetary atmospheric waves on the Adriatic Sea level. Journal of Physical Oceanography, 13, 1301–1306.CrossRefGoogle Scholar
  182. Orlić, M. (1983/1984). Are there tsunamis in the Adriatic? (in Croatian). Priroda, 72, 310–311.Google Scholar
  183. Orlić, M. (1993). A simple model of buoyancy-driven seasonal variability in the oceans. Bollettino di Oceanologia Teorica ed Applicata, 11, 93–101.Google Scholar
  184. Orlić, M. (2001). Anatomy of sea level variabilityand example from the Adriatic. In F. El-Hawary, (Ed.), The ocean engineering handbook (pp. 1.1–1.14). London: CRC Press.Google Scholar
  185. Orlić, M. (2015). The first attempt at cataloguing tsunami-like waves of meteorological origin in Croatian coastal waters. Acta Adriatica, 56, 83–96.Google Scholar
  186. Orlić, M., Belušić, D., Janeković, I., & Pasarić, M. (2010). Fresh evidence relating the great Adriatic surge of 21 June 1978 to mesoscale atmospheric forcing. Journal of Geophysical Research, 115, C06011. doi: 10.1029/2009JC005777.CrossRefGoogle Scholar
  187. Orlić, M., Kuzmić, M., & Pasarić, Z. (1994). Response of the Adriatic Sea to the bora and sirocco forcing. Continental Shelf Research, 14, 91–116.CrossRefGoogle Scholar
  188. Orlić, M., & Pasarić, M. (1994). Adriatic Sea level and global climatic changes (in Croatian). Pomorski zbornik, 32, 481–501.Google Scholar
  189. Orlić, M., & Pasarić, M. (1997). Seven decades of sea-level measurements in the Bakar Bay (in Croatian). Natural History Researches of the Rijeka region, Natural History Library, Rijeka, 1, 201–209.Google Scholar
  190. Orlić, M., & Pasarić, M. (2000). Sea-level changes and crustal movements recorded along the east Adriatic coast. Il Nuovo Cimento C, 23, 351–364.Google Scholar
  191. Orlić, M., & Pasarić, M. (2013a). Is the Mediterranean Sea level rising again? Rapports et procès-verbaux des réunions CIESMM, 40, 205.Google Scholar
  192. Orlić, M., & Pasarić, Z. (2013b). Semi-empirical versus process-based sea-level projections for the twenty-first century. Nature Climate Change, 3, 735–738.CrossRefGoogle Scholar
  193. Orlić, M., & Pasarić, Z. (2015). Some pitfalls of the semiempirical method used to project sea level. Journal of Climate, 28, 3779–3785.CrossRefGoogle Scholar
  194. Pagliarulo, R., Antonioli, F., & Anzidei, M. (2013). Sea level changes since the Middle Ages along the coast of the Adriatic Sea: The case of St. Nicholas Basilica, Bari. Southern Italy. Quaternary International, 288, 139–145.Google Scholar
  195. Palumbo, A., & Mazzarella, A. (1982). Mean sea level variations and their practical applications. Journal of Geophysical Research, 87, 4249–4265.CrossRefGoogle Scholar
  196. Pasarić, M., Brizuela, B., Graziani, L., Maramai, A., & Orlić, M. (2012). Historical tsunamis in the Adriatic Sea. Natural Hazards, 61, 281–316.CrossRefGoogle Scholar
  197. Pasarić, M., & Orlić, M. (1992). Response of the Adriatic Sea level to the planetary-scale atmospheric forcing. In P. L. Woodworth, (Ed.), Sea level changes—determination and effects, geophysical monograph, vol. 69, pp. 29–39. Washington: American Geophysical Union.Google Scholar
  198. Pasarić, M., & Orlić, M. (2001). Long-term meteorological preconditioning of the North Adriatic coastal floods. Continental Shelf Research, 21, 263–278.CrossRefGoogle Scholar
  199. Pasarić, M., & Orlić, M. (2004). Meteorological forcing of the Adriatic—present vs. projected climate conditions. Geofizika, 21, 69–87.Google Scholar
  200. Pasarić, M., Pasarić, Z., & Orlić, M. (2000). Response of the Adriatic Sea level to the air pressure and wind forcing at low frequencies (0.01–0.1 cpd). Journal of Geophysical Research, 105, 11423–11439.CrossRefGoogle Scholar
  201. Pasquali, D., Di Risio, M., & De Girolamo, P. (2015). A simplified real time method to forecast semi-enclosed basins storm surge. Estuarine, Coastal and Shelf Science, 165, 61–69.CrossRefGoogle Scholar
  202. Patritius, F. (1591). Nova de universis philosophia. Ferrara: B. Mammarelli.Google Scholar
  203. Pattiaratchi, C. B., & Wijeratne, E. M. S. (2015). Are meteotsunamis an underrated hazard? Philosophical Transactions of the Royal Society A, 373, 20140377. doi: 10.1098/rsta.2014.0377.CrossRefGoogle Scholar
  204. Pattullo, J., Munk, W., Revelle, R., & Strong, E. (1955). The seasonal oscillation in sea level. Journal of Marine Research, 14, 88–155.Google Scholar
  205. Paulatto, M., Pinat, T., & Romanelli, F. (2007). Tsunami hazard scenarios in the Adriatic Sea domain. Natural Hazards and Earth System Sciences, 7, 309–325.CrossRefGoogle Scholar
  206. Peltier, W. R., Argus, D. F., & Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE-6G_C (VM5a) model. Journal of Geophysical Research, 120, 450–487.Google Scholar
  207. Penzar, B., Orlić, M., & Penzar, I. (1980). Sea-level changes in the Adriatic as a consequence of some wave occurrences in the atmosphere. Thalassia Jugoslavica, 16, 51–77.Google Scholar
  208. Petaccia, S., Serravall, R., & Pellicano, F. (2006). Improved method of sea level forecasting at Venice (Northern Adriatic Sea). Communications in Nonlinear Science and Numerical Simulation, 11, 281–296.CrossRefGoogle Scholar
  209. Pickering, M. D., Wells, N. C., Horsburgh, K. J., & Green, J. A. M. (2012). The impact of future sea-level rise on the European Shelf tides. Continental Shelf Research, 35, 1–15.CrossRefGoogle Scholar
  210. Piecuch, C. G., & Ponte, R. M. (2015). Inverted barometer contributions to recent sea level changes along the northeast coast of North America. Geophysical Research Letters, 42, 5918–5925.CrossRefGoogle Scholar
  211. Pinardi, N., Bonaduce, A., Navarra, A., Dobricic, S., & Oddo, P. (2014). The mean sea level equation and its application to the Mediterranean Sea. Journal of Climate, 27, 442–447.CrossRefGoogle Scholar
  212. Pirazzoli, P. A. (1986). Secular trends of relative sea-level (RSL) changes indicated by tide-gauge records. Journal of Coastal Research, SI1, 1–26.Google Scholar
  213. Pirazzoli, P. A. (2005). A review of possible eustatic, isostatic and tectonic contributions in eight late-Holocene relative sea-level histories from the Mediterranean area. Quaternary Science Reviews, 24, 1989–2001.CrossRefGoogle Scholar
  214. Pirazzoli, P. A., & Tomasin, A. (2002). Recent evolution of surge-related events in the northern Adriatic area. Journal of Coastal Research, 18, 537–554.Google Scholar
  215. Pirazzoli, P. A., & Tomasin, A. (2007/2008). Sea level and surges in the Adriatic Sea area: Recent trends and possible near-future scenarios. Atti dell’Istituto Veneto di Scienze, Lettere ed Arti, 166, 61–83.Google Scholar
  216. Planton, S., Lionello, P., Artale, V., Aznar, R., Carillo, A., Colin, J., et al. (2012). Modelling of the Mediterranean climate system. In P. Lionello (Ed.), Mediterranean climate variability (pp. 449–502). Amsterdam: Elsevier.Google Scholar
  217. Polli, S. (1938). Livelli medi, capisaldi di livellazione e ampiezze della marea nel porto di Trieste. Memorie, R. Comitato Talassografico Italiano, 253, 1–27.Google Scholar
  218. Polli, S. (1947). Analisi periodale delle serie dei livelli marini di Trieste e Venezia. Rivista di Geofisica Pura ed Applicata, 10, 29–40.Google Scholar
  219. Polli, S. (1959). La propagazione delle maree nell’Adriatico. IX Convegno della Associazione Geofisica Italiana, Associazione Geofisica Italiana, Roma, 1959, 1–11.Google Scholar
  220. Pugh, D. T. (1987). Tides, surges and mean sea-level: A handbook for engineers and scientists. Chichester: Wiley.Google Scholar
  221. Rabinovich, A. B. (2009). Seiches and harbour oscillations. In Y. C. Kim, (Ed.), Handbook of coastal and ocean engineering (pp. 193–236). Singapore: World Scientific.CrossRefGoogle Scholar
  222. Radić Rossi, I. (2012). Underwater cultural heritage and maritime archaeology in Croatia: An overview. European Journal of Archaeology, 15, 285–308.CrossRefGoogle Scholar
  223. Raicich, F. (2003). Recent evolution of sea-level extremes at Trieste (Northern Adriatic). Continental Shelf Research, 23, 225–235.CrossRefGoogle Scholar
  224. Raicich, F. (2010). On the contributions of atmospheric pressure and wind to daily sea level in the northern Adriatic Sea. Continental Shelf Research, 30, 1575–1581.CrossRefGoogle Scholar
  225. Raicich, F. (2015). Long-term variability of storm surge frequency in the Venice Lagoon: An update thanks to 18th century sea level observations. Natural Hazards and Earth System Sciences, 15, 527–535.CrossRefGoogle Scholar
  226. Raicich, F., Orlić, M., Vilibić, I., & Malačič, V. (1999). A case study of the Adriatic seiches (December 1997). Il Nuovo Cimento C, 22, 715–726.Google Scholar
  227. Renault, L., Vizoso, G., Jansà, A., Wilkin, J., & Tintoré, J. (2011). Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models. Geophysical Research Letters, 38, L10601. doi: 10.1029/2011GL047361.CrossRefGoogle Scholar
  228. Rožić, N. (2001). Fundamental levelling networks and height datums at the territory of the Republic of Croatia. Acta Geodaetica et Geophysica Hungarica, 36, 231–243.CrossRefGoogle Scholar
  229. Rožić, N. (2015). Kinematic models of recent motion of the Earth’s crust on the territory of Croatia, Slovenia and Bosnia and Herzegovina. Geofizika, 32, 209–236.CrossRefGoogle Scholar
  230. Scarascia, L., & Lionello, P. (2013). Global and regional factors contributing to the past and future sea level rise in the Adriatic Sea. Global and Planetary Change, 106, 51–63.CrossRefGoogle Scholar
  231. Schwab, D. J., & Rao, D. B. (1983). Barotropic oscillations of the Mediterranean and Adriatic Seas. Tellus, 35(1), 417–427.CrossRefGoogle Scholar
  232. Šegota, T. (1996). Sea level of the Adriatic Sea indicated by Bakar tide-gauge data (in Croatian). Geografski glasnik, 58, 15–32.Google Scholar
  233. Šepić, J., Međugorac, I., Janeković, I., Dunić, N., & Vilibić, I. (2016). Multi-meteotsunami event in the Adriatic Sea generated by atmospheric disturbances of 25–26 June 2014. Pure and Applied Geophysics. doi: 10.1007/s00024-016-1249-4.Google Scholar
  234. Šepić, J., & Orlić, M. (2016). Meteorological tsunamis in the Adriatic Sea. http://www.izor.hr/meteotsunami. Accessed 20 July 2017.
  235. Šepić, J., Orlić, M., & Vilibić, I. (2008). The Bakar Bay seiches and their relationship with atmospheric processes. Acta Adriatica, 49(2), 107–123.Google Scholar
  236. Šepić, J., & Vilibić, I. (2011). The development and implementation of a real-time meteotsunami warning network for the Adriatic Sea. Natural Hazards and Earth System Sciences, 11, 83–91.CrossRefGoogle Scholar
  237. Šepić, J., Vilibić, I., & Belušić, D. (2009). The source of the 2007 Ist meteotsunami (Adriatic Sea). Journal of Geophysical Research. doi: 10.1029/2008JC005092.Google Scholar
  238. Šepić, J., Vilibić, I., & Fine, I. (2015a). Northern Adriatic meteorological tsunamis: Assessment of their potential through ocean modeling experiments. Journal of Geophysical Research, 120, 2993–3010.Google Scholar
  239. Šepić, J., Vilibić, I., Jordà, G., & Marcos, M. (2012). Mediterranean sea level forced by atmospheric pressure and wind: Variability of the present climate and future projections for several period bands. Global and Planetary Change, 86–87, 20–30.CrossRefGoogle Scholar
  240. Šepić, J., Vilibić, I., Lafon, A., Macheboeuf, L., & Ivanović, Z. (2015b). High-frequency sea level oscillations in the Mediterranean and their connection to synoptic patterns. Progress in Oceanography, 137, 284–298.CrossRefGoogle Scholar
  241. Šepić, J., Vilibić, I., Rabinovich, A. B., & Monserrat, S. (2015c). Widespread tsunami-like waves of 23–27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing. Scientific Reports, 5, 11682.CrossRefGoogle Scholar
  242. Sguazzero, P., Giommoni, A., & Goldmann, A. (1972). An empirical model for the prediction of the sea level in Venice (25th ed.). Venice: IBM.Google Scholar
  243. Smith, R. L. (1986). Extreme value theory based on the r largest annual events. Journal of Hydrology, 86, 27–43.CrossRefGoogle Scholar
  244. Soloviev, S. L., Solovieva, O. N., Go, C. N., & Shchetnikov, N. A. (2000). Tsunamis in the Mediterranean sea 2000 B.C.—2000 A.D. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  245. Sorensen, C., Broge, N. H., Molgaard, M. R., Schow, C. S., Thomsen, P., Vognsen, K., et al. (2016). Assessing future flood hazards for adaptation planning in a northern European coastal community. Frontiers in Marine Science, 3, 69. doi: 10.3389/fmars.2016.00069.CrossRefGoogle Scholar
  246. Stammer, D. (2008). Response of the global ocean to Greenland and Antarctic ice melting. Journal of Geophysical Research, 113, C06022. doi: 10.1029/2006JC004079.CrossRefGoogle Scholar
  247. Sterneck, R. (1914). Ueber ‘Seiches’ an den Kuesten der Adria. Sitzungsberichte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 123, 2199–2232.Google Scholar
  248. Sterneck, R. (1915). Zur hydrodynamischen Theorie der Adriagezeiten. Sitzungsberichte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 124, 147–180.Google Scholar
  249. Sterneck, R. (1919). Die Gezeitenerscheinungen in der Adria, II. Teil, Die theoretische Erklaerung der Beobachtungs-Tatsachen. Denkschrifte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 96, 277–324.Google Scholar
  250. Stocchi, P., & Spada, G. (2009). Influence of glacial isostatic adjustment upon current sea level variations in the Mediterranean. Tectonophysics, 474, 55–68.CrossRefGoogle Scholar
  251. Stocchi, P., Spada, G., & Cianetti, G. (2005). Isostatic rebound following the Alpine deglaciation: Impact on the sea level variations and vertical movements in the Mediterranean region. Geophysical Journal International, 162, 137–147.CrossRefGoogle Scholar
  252. Stravisi, F. (1973). Analysis of a storm surge in the Adriatic Sea by means of a two-dimensional linear model. Rendiconti, Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 54, 243–260.Google Scholar
  253. Stravisi, F., & Ferraro, S. (1986). Monthly and annual mean sea levels at Trieste, 1890–1984. Bollettino di oceanologia teorica ed applicata, 4, 97–104.Google Scholar
  254. Surić, M., Korbar, T., & Juračić, M. (2014). Tectonic constraints on the late Pleistocene-Holocene relative sea-level change along the north-eastern Adriatic coast (Croatia). Geomorphology, 220, 93–103.CrossRefGoogle Scholar
  255. Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., et al. (2009). Sinking deltas due to human activities. Nature Geoscience, 2, 681–686.CrossRefGoogle Scholar
  256. Taylor, G. I. (1921). Tidal oscillations in gulfs and rectangular basins. Proceedings of the London Mathematical Society, 2(20), 148–181.Google Scholar
  257. Teferle, F. N., Williams, S. D. P., Kierulf, H. P., Bingley, R. M., & Plag, H. P. (2008). A continuous GPS coordinate time series analysis strategy for high-accuracy vertical land movements. Physics and Chemistry of the Earth, 33, 205–216.CrossRefGoogle Scholar
  258. Tiberti, M. M., Lorito, S., Basili, R., Kastelić, V., Piatanesi, A., & Valensis, G. (2008). Scenarios of earthquake-generated tsunamis for the Italian coast of the Adriatic Sea. Pure and Applied Geophysics, 165, 2117–2142.CrossRefGoogle Scholar
  259. Tinti, S., Graziani, L., Brizuela, B., Maramai, A., & Galazzi, S. (2012). Applicability of the decision matrix on the North Eastern Atlantic, Mediterranean and connected seas Tsunami Warning System to the Italian tsunamis. Natural Hazards and Earth System Sciences, 12, 843–857.CrossRefGoogle Scholar
  260. Tinti, S., & Maramai, A. (1999). Large tsunamis and tsunami hazard from the new Italian tsunami catalog. Physics and Chemistry of the Earth, 24, 151–156.CrossRefGoogle Scholar
  261. Tinti, S., Maramai, A., & Favali, P. (1995). The Gargano promontory: An important Italian seismogenic-tsunamigenic area. Marine Geology, 122, 227–241.CrossRefGoogle Scholar
  262. Tinti, S., Maramai, A., & Graziani, L. (2004). The new catalogue of the Italian tsunamis. Natural Hazards, 33, 439–465.CrossRefGoogle Scholar
  263. Tinti, S., & Piatanesi, A. (1996). Numerical simulations of the tsunami induced by the 1627 eartquake affecting Gargano, Southern Italy. Journal of Geodynamics, 21, 141–160.CrossRefGoogle Scholar
  264. Toaldo, T. (1977). De reciproco aestu Maris Veneti. Philosophical Transactions of the Royal Society of London, 67, 145–159.Google Scholar
  265. Tomasin, A., & Frassetto, R. (1979). Cyclogenesis and forecast of dramatic water elevations in Venice. In J. C. J. Nihoul (Ed.), Marine forecasting (pp. 427–438). Amsterdam: Elsevier.Google Scholar
  266. Tosi, L., Teatini, P., & Strozzi, T. (2013). Natural versus anthropogenic subsidence of Venice. Scientific Reports, 3, 2710. doi: 10.1038/srep02710.CrossRefGoogle Scholar
  267. Tosoni, A., & Canestrelli, P. (2010/2011). Il modelo stocatisco per la previsione di marea a Venezia. Atti dell’Istituto Veneto di Scienze, Lettere ed Arti, 164, 65–86.Google Scholar
  268. Trigo, I. F., & Davies, T. D. (2002). Meteorological conditions associated with sea surges in Venice: A 40 year climatology. International Journal of Climatology, 22, 787–803.CrossRefGoogle Scholar
  269. Tsimplis, M. N. (1995). The response of sea level to atmospheric forcing in the Mediterranean. Journal of Coastal Research, 11, 1309–1321.Google Scholar
  270. Tsimplis, M. N., Álvarez-Fanjul, E., Gomis, D., Fenoglio-Marc, L., & Pérez, B. (2005). Mediterranean Sea level trends: Atmospheric pressure and wind contribution. Geophysical Research Letters, 32, L20602. doi: 10.1029/2005GL023867.CrossRefGoogle Scholar
  271. Tsimplis, M. N., & Baker, T. F. (2000). Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? Geophysical Research Letters, 27(12), 1731–1734.CrossRefGoogle Scholar
  272. Tsimplis, M. N., Calafat, F. M., Marcos, M., Jordà, G., Gomis, D., Fenoglio-Marc, L., et al. (2013). The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. Journal of Geophysical Research, 118, 944–952.Google Scholar
  273. Tsimplis, M. N., & Josey, S. A. (2001). Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophysical Research Letters, 28(5), 803–806.CrossRefGoogle Scholar
  274. Tsimplis, M., Marcos, M., & Somot, S. (2008a). 21st century Mediterranean Sea level rise: Steric and atmospheric pressure contributions from a regional model. Global and Planetary Change, 63, 105–111.CrossRefGoogle Scholar
  275. Tsimplis, M., Marcos, M., Somot, S., & Barnier, B. (2008b). Sea level forcing in the Mediterranean Sea between 1960 and 2000. Global and Planetary Change, 63, 325–332.CrossRefGoogle Scholar
  276. Tsimplis, M. N., Proctor, R., & Flather, R. (1995). A two-dimensional tidal model for the Mediterranean Sea. Journal of Geophysical Research, 100, 16223–16239.CrossRefGoogle Scholar
  277. Tsimplis, M. N., Raicich, F., Fenoglio-Marc, L., Shaw, A. G. P., Marcos, M., Somot, S., et al. (2012). Recent developments in understanding sea level rise at the Adriatic coasts. Physics and Chemistry of the Earth, 40–41, 59–71.CrossRefGoogle Scholar
  278. Tsimplis, M. N., & Rixen, M. (2002). Sea level in the Mediterranean Sea: The contribution of temperature and salinity changes. Geophysical Research Letters, 29(23), 2136. doi: 10.1029/2002GL015870.CrossRefGoogle Scholar
  279. Tsimplis, M. N., & Spencer, N. E. (1997). Collection and analysis of monthly mean sea level data in the Mediterranean and the Black Sea. Journal of Coastal Research, 13, 534–544.Google Scholar
  280. Tsimplis, M. N., & Vlahakis, G. N. (1994). Meteorological forcing and sea level variability in the Aegean Sea. Journal of Geophysical Research, 99, 9879–9890.CrossRefGoogle Scholar
  281. Tsimplis, M. N., & Woodworth, P. L. (1994). The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. Journal of Geophysical Research, 99, 16031–16039.CrossRefGoogle Scholar
  282. Tushingham, A. M., & Peltier, W. R. (1989). ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of post glacial relative sea level change. Journal of Geophysical Research, 96, 4497–4523.CrossRefGoogle Scholar
  283. Umgiesser, G., Canu, D. M., Cucco, A., & Solidoro, C. (2004). A finite element model for the Venice Lagoon. Development, set up, calibration and validation. Journal of Marine Systems, 51, 123–145.CrossRefGoogle Scholar
  284. Unal, Y. S., & Ghil, M. (1995). Interannual and interdecadal oscillation patterns in sea level. Climate Dynamics, 11, 255–278.CrossRefGoogle Scholar
  285. UNESCO. (2009). Tsunami Early Warning and Mitigation System in the North Eastern Atlantic, the Mediterranean and Connected Seas, NEAMTWS, Implementation Plan, Intergovernmental Oceanographic Commission Technical Series (p. 46). Paris: UNESCO.Google Scholar
  286. Vacchi, M., Marriner, N., Morhange, C., Spada, G., Fontana, A., & Rovere, A. (2015). Multiproxy assessment of Holocene relative sea-level changes in the western Mediterranean: Sea-level variability and improvements in the definition of the isostatic signal. Earth-Science Reviews, 155, 172–197.CrossRefGoogle Scholar
  287. Vannucci, G., Pondrelli, S., Argnani, A., Morelli, A., Gasperini, P., & Boschi, E. (2004). An atlas of Mediterranean seismicity. Annals of Geophysics, 47, 247–306.Google Scholar
  288. Vera, J. D., Criado-Aldeanueva, F., Garcia-Lafuente, J., & Soto-Navarro, F. J. (2009). A new insight on the decreasing sea level trend over the Ionian basin in the last decades. Global and Planetary Change, 68, 232–235.CrossRefGoogle Scholar
  289. Vercelli, F. (1941). Le maree e le sesse nel porto di Zara. La Ricerca Scientifica, 12(1), 1–8.Google Scholar
  290. Vilibić, I., & Šepić, J. (2009). Destructive meteotsunamis along the eastern Adriatic coast: Overview. Physics and Chemistry of the Earth, 34, 904–917.CrossRefGoogle Scholar
  291. Vilibić, I. (2000). A climatological study of the uninodal seiche in the Adriatic Sea. Acta Adriatica, 41(2), 89–102.Google Scholar
  292. Vilibić, I. (2005). Numerical study of the Middle Adriatic coastal waters sensitivity to the various air pressure travelling disturbances. Annales Geophysicae, 23, 3569–3578.CrossRefGoogle Scholar
  293. Vilibić, I. (2006a). The role of the fundamental seiche in the Adriatic coastal floods. Continental Shelf Research, 26, 206–216.CrossRefGoogle Scholar
  294. Vilibić, I. (2006b). Seasonal sea level variations in the Adriatic. Acta Adriatica, 41(2), 141–158.Google Scholar
  295. Vilibić, I. (2008). Numerical simulations of the Proudman resonance. Continental Shelf Research, 28, 574–581.CrossRefGoogle Scholar
  296. Vilibić, I., Domijan, N., & Čupić, S. (2005a). Wind versus air pressure seiche triggering in the Middle Adriatic coastal waters. Journal of Marine Systems, 57, 189–200.CrossRefGoogle Scholar
  297. Vilibić, I., Domijan, N., Orlić, M., Leder, N., & Pasarić, M. (2004). Resonant coupling of a traveling air-pressure disturbance with the east Adriatic coastal waters. Journal of Geophysical Research, 109, C10001. doi: 10.1029/2004JC002279.CrossRefGoogle Scholar
  298. Vilibić, I., Leder, N., & Smirčić, A. (2000). Storm surges in the Adriatic Sea: an impact on the coastal infrastructure. Periodicum Biologorum, 102(Suppl. ), 483–488.Google Scholar
  299. Vilibić, I., & Mihanović, H. (2002). A study of seiches in the Split harbour (Adriatic Sea). Acta Adriatica, 43(2), 59–68.Google Scholar
  300. Vilibić, I., & Mihanović, H. (2003). A study of resonant oscillations in the Split harbour (Adriatic Sea). Estuarine, Coastal and Shelf Science, 56, 861–867.CrossRefGoogle Scholar
  301. Vilibić, I., & Mihanović, H. (2005). Resonance in Ploče Harbor (Adriatic Sea). Acta Adriatica, 46(2), 125–136.Google Scholar
  302. Vilibić, I., Mihanović, H., Janeković, I., Denamiel, C., Poulain, P.-M., Orlić, M., et al. (2017). Dense water formation in the coastal northeastern Adriatic Sea: The NAdEx 2015 experiment. Ocean Science Discussions. doi: 10.5194/os-2017-6. (in review).Google Scholar
  303. Vilibić, I., Monserrat, S., Rabinovich, A. B., & Mihanović, H. (2008). Numerical modeling of a destructive meteotsunami that occurred on 15 June 2006 at the Balearic Islands. Pure and Applied Geophysics, 165, 2169–2195.CrossRefGoogle Scholar
  304. Vilibić, I., & Orlić, M. (1999). Surface seiches and internal Kelvin waves observed off Zadar (east Adriatic). Estuarine, Coastal and Shelf Science, 48, 125–136.CrossRefGoogle Scholar
  305. Vilibić, I., Orlić, M., Čupić, S., Domijan, N., Leder, N., Mihanović, H., et al. (2005b). A new approach to sea level observations in Croatia. Geofizika, 22, 21–57.Google Scholar
  306. Vilibić, I., & Šepić, J. (2010). Long-term variability and trends of sea level storminess and extremes in European Seas. Global and Planetary Change, 71, 1–12.CrossRefGoogle Scholar
  307. Vilibić, I., Šepić, J., Rabinovich, A. B., & Monserrat, S. (2016). Modern approaches in meteotsunami research and early warning. Frontiers in Marine Sciences, 3, 57. doi: 10.3389/fmars.2016.00057.Google Scholar
  308. Vučetić, T., & Barčot, T. (2008). Zapisi o plimnom valu u Veloj Luci 21.06.1978. (in Croatian). Municipality of Vela Luka, Institute of Oceanography and Fisheries, Croatia, p. 80.Google Scholar
  309. Vučetić, T., Vilibić, I., Tinti, S., & Maramai, A. (2009). The Great Adriatic flood of 21 June 1978 revisited: An overview of the reports. Physics and Chemistry of the Earth, 34, 894–903.CrossRefGoogle Scholar
  310. Wakelin, S. L., & Proctor, R. (2002). The impact of meteorology on modelling storm surges in the Adriatic Sea. Global and Planetary Change, 34, 97–119.CrossRefGoogle Scholar
  311. Watson, C. S., White, N. J., Church, J. A., King, M. A., Burgette, R. J., & Legresy, B. (2015). Unabated global mean sea-level rise over the satellite altimeter era. Nature Climate Change, 5, 565–568.CrossRefGoogle Scholar
  312. Wolff, C., Vafeidis, A. T., Lincke, D., Marasmi, C., & Hinkel, J. (2016). Effects of scale and input data on assessing the future impacts of coastal flooding: An application of DIVA for the Emilia-Romagna coast. Frontiers in Marine Science, 3, 41. doi: 10.3389/fmars.2016.00041.CrossRefGoogle Scholar
  313. Woodworth, P. L. (2003). Some comments on the long sea level records from the northern Mediterranean. Journal of Coastal Research, 19, 212–217.Google Scholar
  314. Woodworth, P. L., Aman, A., & Aarup, T. (2007). Sea level monitoring in Africa. African Journal of Marine Science, 29, 321–330.CrossRefGoogle Scholar
  315. Woodworth, P. L., Gravelle, M., Marcos, M., Wöppelmann, G., & Hughes, C. W. (2015). The status of measurement of the Mediterranean mean dynamic topography by geodetic techniques. Journal of Geodesy, 89, 811–827.CrossRefGoogle Scholar
  316. Wöppelmann, G., & Marcos, M. (2012). Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. Journal of Geophysical Research, 117, C01007. doi: 10.1029/2011JC007469.CrossRefGoogle Scholar
  317. Wöppelmann, G., Martin Miguez, B., Bouin, M.-N., & Altamimi, Z. (2007). Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Global and Planetary Change, 57, 396–406.CrossRefGoogle Scholar
  318. Zampato, L., Bajo, M., Canestrelli, P., & Umgiesser, G. (2016). Storm surge modelling in Venice: two years of operational results. Journal of Operational Oceanography, 9, S46–S57.CrossRefGoogle Scholar
  319. Zampato, L., Umgiesser, G., & Zecchetto, S. (2006). Storm surge in the Adriatic Sea: observational and numerical diagnosis of an extreme event. Advances in Geosciences, 7, 371–378.CrossRefGoogle Scholar
  320. Zampato, L., Umgiesser, G., & Zecchetto, S. (2007). Sea level forecasting in Venice through high resolution meteorological fields. Estuarine, Coastal and Shelf Science, 75, 223–235.CrossRefGoogle Scholar
  321. Zanchettin, D., Traverso, P., & Tomasino, M. (2006). Discussion on sea level fluctuations along the Adriatic coasts coupling to climate indices forced by solar activity: Insights into the future of Venice. Global and Planetary Change, 50, 226–234.CrossRefGoogle Scholar
  322. Zecchetto, S., Umgiesser, G., & Brocchini, M. (1997). Hindcast of a storm surge induced by local real wind fields in the Venice Lagoon. Continental Shelf Research, 17, 1513–1538.CrossRefGoogle Scholar
  323. Zecchin, M., Gordini, E., & Ramella, R. (2015). Recognition of a drowned delta in the northern Adriatic Sea, Italy: Stratigraphic characteristics and its significance in the frame of the early Holocene sea-level rise. The Holocene, 25, 1027–1038.CrossRefGoogle Scholar
  324. Zerbini, S., Bruni, S., Errico, M., & Santi, E. (2015). Space geodetic activities, from the early days to present, with focus on the northeastern Adriatic. Rendiconti, Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, 26(Suppl. 1), S43–S51.CrossRefGoogle Scholar
  325. Zhang, K. Q., Douglas, B. C., & Leatherman, S. P. (2000). Twentieth-century storm activity along the US east coast. Journal of Climate, 13, 1748–1761.CrossRefGoogle Scholar
  326. Zore, M. (1960). Variations of the sea level along the eastern Adriatic coast and the system of gradient currents in the Adriatic (in Croatian). Hidrografski godišnjak, 1959, 59–65.Google Scholar
  327. Zore-Armanda, M. (1979). Destructive wave in the Adriatic. Rapport et Procès verbaux des Réunions du Conseil International pour l’Exploration Scientifique de la Mer Méditerranée, 25–26, 93–94.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ivica Vilibić
    • 1
  • Jadranka Šepić
    • 1
  • Mira Pasarić
    • 2
  • Mirko Orlić
    • 2
  1. 1.Institute of Oceanography and FisheriesSplitCroatia
  2. 2.Faculty of Science, Andrija Mohorovičić Geophysical InstituteUniversity of ZagrebZagrebCroatia

Personalised recommendations