Skip to main content
Log in

A Comparative Analysis of Coastal and Open-Ocean Records of the Great Chilean Tsunamis of 2010, 2014 and 2015 off the Coast of Mexico

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The three great earthquakes off the coast of Chile on 27 February 2010 (Maule, M w 8.8), 1 April 2014 (Iquique, M w 8.2) and 16 September 2015 (Illapel, M w 8.3) generated major transoceanic tsunamis that spread throughout the Pacific Ocean and were measured by numerous coastal tide gauges and open-ocean DART stations. Statistical and spectral analyses of the tsunami waves from the events recorded on the Pacific coast of Mexico enabled us to estimate parameters of the waves along the coast and to compare statistical features of the events. We also identified three coastal “hot spots” (sites having maximum tsunami risk): Puerto Angel, Puerto Madero and Manzanillo. Based on the joint spectral analyses of the tsunamis and background noise, we have developed a method for using coastal observations to determine the underlying spectrum of tsunami waves in the deep ocean. The “reconstructed” open-ocean tsunami spectra are in close agreement with the actual tsunami spectra evaluated from direct analysis of the DART records offshore of Mexico. We have further used the spectral estimates to parameterize the energy of the three Chilean tsunamis based on the total open-ocean tsunami energy and frequency content of the individual events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Notes

  1. DART = Deep-ocean Assessment and Reporting of Tsunamis, is an effective network of deep-ocean stations elaborated for continuous monitoring of tsunami waves in the open ocean and early tsunami warning (cf. Titov 2009; Mofjeld 2009; Mungov et al. 2013; Rabinovich and Eblé 2015).

  2. The first wave at Salina Cruz was also quite strong, but slightly weaker than the wave that arrived after 12.5 h (Fig. 4).

  3. This is a typical definition in spectral analysis. In analogy with light, a “red spectrum” is one in which energy is mainly at low frequencies and decreases with increasing frequency; a “blue spectrum” has most energy at high frequencies and energy increases with increasing frequency. A “white spectrum” has uniform energy distribution (cf. Thomson and Emery 2014).

  4. We qualify this by noting that the “source function” can be indicative not only of the initial seismic source but also of secondary remote sources associated with open ocean tsunami wave scattering and reflection.

  5. M w 8.4 according to Heidarzadeh et al. (2016).

  6. In actuality, this tsunami was recorded by a few more tide gauges, in particular, Guerrero Negro, but the records were of poor quality.

  7. A very similar situation is observed at Prince Rupert on the northern coast of British Columbia where only ultra-long tsunami oscillations are recorded (with T > 1 h), while high-frequency signals arriving at this station are strongly attenuated (filtered) by Dixon Entrance (a wide strait) and by the shelf adjacent to the station, playing the role of an effective low-pass filter (Rabinovich et al. 2013a).

  8. This is the mean amplitude; tsunami waves at specific sites with large Q-factor and strong resonant properties may be much higher.

  9. The physical sense of this coefficient is similar to the ‘generation coefficient’ introduced by Šepić and Rabinovich (2014) to characterize the sea level response to small-scale atmospheric disturbances and the efficiency of meteotsunami generation along the East Coast of the United States.

References

  • An, C., Sepúlveda, I., & Liu, P. L.-F. (2014). Tsunami source and its validation of the 2014 Iquique, Chile, earthquake. Geophysical Reseach Letters, 41, 3988–3994. doi:10.1002/2014GL060567.

    Article  Google Scholar 

  • Aránguiz, R., González, G., González, J., Catalán, P. A., Cienfuegos, R., Yagi, Y., et al. (2016). The 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives. Pure and Applied Geophysics, 173, 333–348. doi:10.1007/s00024-015-1225-4.

    Article  Google Scholar 

  • Borrero, J. C., & Greer, S. D. (2013). Comparison of the 2010 Chile and 2011 Japan tsunamis in the far field. Pure and Applied Geophysics, 170(6–8), 1249–1274. doi:10.1007/s00024-012-0559-4.

    Article  Google Scholar 

  • Calisto, I., Ortega, M., & Miller, M. (2015). Observed and modelled tsunami signals compared by using different rupture models of the April 1, 2014, Iquique earthquake. Natural Hazards, 79, 397–408. doi:10.1007/s11069-015-1848-x.

    Article  Google Scholar 

  • Calisto, I., Miller, M., & Constanzo, I. (2016). Comparison between tsunami signals generated by different source models and the observed data of the Illapel 2015 earthquake. Pure and Applied Geophysics, 173(4), 1051–1061. doi:10.1007/s00024-016-1253-8.

    Article  Google Scholar 

  • Candella, R. N., Rabinovich, A. B., & Thomson, R. E. (2008). The 2004 Sumatra tsunami as recorded on the Atlantic coast of South America. Advances in Geosciences, 14(1), 117–128.

    Article  Google Scholar 

  • Catalán, P. A., Aránguiz, R., González, G., et al. (2015). The 1 April 2014 Pisagua tsunami: Observations and modeling. Geophysical Research Letters,. doi:10.1002/2015GL063333.

    Google Scholar 

  • Contreras-López, M., Winckler, P., Sepúlveda, I., Andaur-Álvarez, A., Cortés-Molina, F., Guerrero, C. J., et al. (2016). Field survey of the 2015 Chile tsunami with emphasis on coastal wetland and conservation areas. Pure and Applied Geophysics, 173(2), 349–367. doi:10.1007/s00024-015-1235-2.

    Article  Google Scholar 

  • Delouis, B., Nocquet, J.M., & Vallée M. (2010). Slip distribution of the February 27, 2010 Mw = 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophysical Research Letters, 37, L17305. doi:10.1029/2009GL043899.

  • Eblé, M. C., Mungov, G., & Rabinovich, A. B. (2015). On the leading negative phase of major 2010–2014 tsunamis. Pure and Applied Geophysics, 172(12), 3493–3508. doi:10.1007/s00024-01.

    Article  Google Scholar 

  • Farreras, S. F., & Sanchez, A. J. (1991). The tsunami threat on the Mexican west coast: A historical analysis and recommendations for hazard mitigation. Natural Hazards, 4, 301–316.

    Article  Google Scholar 

  • Farreras, S. F., Ortiz, M., & González, J. I. (2007). Steps towards the implementation of a tsunami detection, warning, mitigation and preparedness program for south western coastal areas of Mexico. Pure and Applied Geophysics, 164, 605–616. doi:10.1007/s00024-006-0175-2.

    Article  Google Scholar 

  • Filloux, J. H., Luther, D. S., & Chave, A. D. (1991). Update on seafloor pressure and electric field observations from the north-central and northeastern Pacific: Tides, infratidal fluctuations, and barotropic flow. In B. B. Parker (Ed.), Tidal hydrodynamics (pp. 617–639). New York: J. Wiley.

    Google Scholar 

  • Fine, I. V., & Thomson, R. E. (2013). A wavefront orientation method for precise numerical determination of tsunami travel time. Natural Hazards and Earth Systems Sciences, 13, 2863–2870. doi:10.5194/nhess-13-2863-2013.

    Article  Google Scholar 

  • Fine, I. V., Cherniawsky, J. Y., Thomson, R. E., Rabinovich, A. B., & Krassovski, M. V. (2015). Observations and numerical modeling of the 2012 Haida Gwaii tsunami off the coast of British Columbia. Pure and Applied Geophysics, 172(3–4), 699–718. doi:10.1007/s00024-014-1012-7.

    Article  Google Scholar 

  • Fritz, H. M., Petroff, C. M., Catalán, P. A., et al. (2011). Field survey of the 27 February 2010 Chile tsunami. Pure and Applied Geophysics, 168(11/12), 1989–2010. doi:10.1007/s00024-011-0283-5.

    Article  Google Scholar 

  • Fuentes, M., Riquelme, S., Hayes, G., Medina, M., Melgar, D., Vargas, G., et al. (2016). A study of the 2015 M w 8.3 Illapel earthquake and tsunami: Numerical and analytical approaches. Pure and Applied Geophysics, 173, 1847–1858. doi:10.1007/s00024-016-1305-0.

    Article  Google Scholar 

  • Fujii, Y., & Satake, K. (2013). Slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes inferred from tsunami waveforms and coastal geodetic data. Pure and Applied Geophysics, 170(9–10), 1493–1509. doi:10.1007/s00024-012-0524-2.

    Article  Google Scholar 

  • Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., et al. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophysical Research Letters, 42(4), 1053–1060. doi:10.1002/2014GL062604.

    Article  Google Scholar 

  • Heidarzadeh, M., Satake, K., Murotani, S., Gusman, A. R., & Watada, S. (2015). Deep-water characteristics of the trans-Pacific tsunami from the 1 April 2014 M w 8.2, Iquique, Chile earthquake. Pure and Applied Geophysics, 172(3–4), 719–730. doi:10.1007/s00024-014-0983-8.

    Article  Google Scholar 

  • Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., & Gusman, A. R. (2016). Source model of the 16 September 2015 Illapel, Chile, M w 8.4 earthquake based on teleseismic and tsunami data. Geophysical Research Letters,. doi:10.1002/2015GL067297.

    Google Scholar 

  • Honda, K., Terada, T., Yoshida, Y., & Isitani, D. (1908). An investigation on the secondary undulations of oceanic tides (p. 108). J. College Sci., Imper. Univ. Tokyo.

  • Igarashi, Y. L., Kong, L., Yamamoto, M., & McCreery, C. S. (2011). Anatomy of historical tsunamis: Lessons learned for tsunami warning. Pure and Applied Geophysics, 168(11/12), 2043–2063. doi:10.1007/s00024-011-0287-1.

    Article  Google Scholar 

  • Kulikov, E. A., Rabinovich, A. B., Spirin, A. I., Poole, S. L., & Soloviev, S. L. (1983). Measurement of tsunamis in the open ocean. Marine Geodesy, 6(3–4), 311–329.

    Article  Google Scholar 

  • Kulikov, E. A., Rabinovich, A. B., & Thomson, R. E. (2005). Estimation of tsunami risk for the coasts of Peru and Northern Chile. Natural Hazards, 35(2), 185–209.

    Article  Google Scholar 

  • Lay, T., Yue, H., Brodsky, E. E., & An, C. (2014). The 1 April 2014 Iquique, Chile, M w 8.1 earthquake rupture sequence. Geophysical Research Letters, 41, 3818–3825. doi:10.1002/2014GL060238.

    Article  Google Scholar 

  • Li, B., & Ghosh, A. (2016). Imaging rupture process of the 2015 Mw 8.3 Illapel earthquake using the US seismic array. Pure and Applied Geophysics, 173(7), 2245–2255. doi:10.1007/s00024-016-1323-y.

    Article  Google Scholar 

  • Miller, G. R. (1972). Relative spectra of tsunamis (p. 7). Hawaii Inst. Geophys, HIG-72-8.

  • Miller, G. R., Munk, W. H., & Snodgrass, F. E. (1962). Long-period waves over California’s borderland. Part II, Tsunamis. Journal of Marine Research, 20(1), 31–41.

    Google Scholar 

  • Mofjeld, H. O. (2009). Tsunami measurements. In A. Robinson & E. Bernard (Eds.), The Sea, vol. 15, Tsunamis (pp. 201–235). Cambridge, USA: Harvard University Press.

  • Mungov, G., Eblé, M., & Bouchard, R. (2013). DART® tsunameter retrospective and real-time data: A reflection on 10 years of processing in support of tsunami research and operations. Pure and Applied Geophysics, 170, 1369–1384. doi:10.1007/s00024-012-0477-5.

    Article  Google Scholar 

  • Omira, R., Baptista, M. A., & Lisboa, F. (2016). Tsunami characteristics along the Peru-Chile trench: analysis of the 2015 M w 8.3 Illapel, the 2014 M w 8.2 Iquique and the 2010 M w 8.8 Maule tsunamis in the near-field. Pure and Applied Geophysics, 173(4), 1063–1077. doi:10.1007/s00024-016-1277-0.

  • Ortiz, M., Singh, S. K., Pacheco, J., & Kostoglodov, V. (1998). Rupture length of the October 9, 1995 Colima-Jalisco earthquake (M w 8) estimated from tsunami data. Geophysical Research Letters, 25, 2857–2860.

    Article  Google Scholar 

  • Ortiz, M., Kostoglodov, V., Singh, S. K., & Pacheco, J. (2000). New constraints on the uplift of October 9, 1995 Jalisco-Colima earthquake (M w 8) based on the analysis of tsunami records at Manzanillo and Navidad, Mexico. Geofísica International, 39, 349–357.

    Google Scholar 

  • Pararas-Carayannis, G. (2010). The earthquake and tsunami of 27 February 2010 in Chile—evaluation of source mechanism and of near and far-field tsunami effects. Science of Tsunami Hazards, 29(2), 96–126.

    Google Scholar 

  • Parker, B. B. (2007). Tidal analysis and prediction, NOAA Spec. Publ. NOS CO-OPS 3 (p. 378). Maryland: Silver Spring.

  • Rabinovich, A. B. (1997). Spectral analysis of tsunami waves: Separation of source and topography effects. Journal Geophysical Research, 102(C6), 12663–12676.

    Article  Google Scholar 

  • Rabinovich, A. B., & Eblé, M. C. (2015). Deep ocean measurements of tsunami waves. Pure and Applied Geophysics, 172(12), 3281–3312. doi:10.1007/s00024-015-1058-1.

    Article  Google Scholar 

  • Rabinovich, A. B., Thomson, R. E., & Stephenson, F. E. (2006). The Sumatra Tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic Oceans. Surveys in Geophysics, 27, 647–677.

    Article  Google Scholar 

  • Rabinovich, A. B., Candella, R., & Thomson, R. E. (2011). Energy decay of the 2004 Sumatra tsunami in the World Ocean. Pure and Applied Geophysics, 168(11), 1919–1950. doi:10.1007/s00024-01-0279-1.

    Article  Google Scholar 

  • Rabinovich, A. B., Candella, R. N., & Thomson, R. E. (2013a). The open ocean energy decay of three recent trans-Pacific tsunamis. Geophysical Research Letters,. doi:10.1002/grl.50625.

    Google Scholar 

  • Rabinovich, A. B., Thomson, R. E., & Fine, I. V. (2013b). The 2010 Chilean tsunami off the west coast of Canada and the northwest coast of the United States. Pure and Applied Geophysics, 170(9–10), 1529–1565. doi:10.1007/s00024-012-0541-1.

    Article  Google Scholar 

  • Sanchez, A. J., & Farreras, S. F. (1983). Maximum entropy spectral analysis of tsunamis along the Mexican coast, 1957–1979. In K. Iida & T. Iwasaki (Eds.), Tsunamis: Their science and engineering (pp. 147–159). Tokyo: Terra Sci.

    Google Scholar 

  • Sanchez, A. J., & Farreras, S. F. (1993). Catalog of Tsunamis on the Western Coast of Mexico (p. 79). Boulder, CO: National Geophysical Data Center.

    Google Scholar 

  • Šepić, J., & Rabinovich, A. B. (2014). Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the ‘‘derecho’’ of June 29–30, 2012. Natural Hazards, 74, 75–107. doi:10.1007/s11069-014-1310-5.

    Article  Google Scholar 

  • Shevchenko, G., Ivelskaya, T., Loskutov, A., & Shishkin, A. (2013). The 2009 Samoan and 2010 Chilean tsunamis recorded on the Pacific coast of Russia. Pure and Applied Geophysics, 170(9–10), 1511–1527. doi:10.1007/s00024-012-0562-9.

    Article  Google Scholar 

  • Stephenson, F. E., & Rabinovich, A. B. (2009). Tsunamis on the Pacific coast of Canada recorded in 1994–2007. Pure and Applied Geophysics, 166(1/2), 177–210. doi:10.1007/s00024-008-0440-7.

    Article  Google Scholar 

  • Tang, L., Titov, V. V., Bernard, E. N., Wei, Y., Chamberlin, C. D., et al. (2012). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. Journal of Geophysical Research, 117, C08008. doi:10.1029/2011JC007635.

  • Tang, L., Titov, V. V., Moore, C., & Wei, Y. (2016). Real-time assessment of the 16 September 2015 Chile tsunami and implications for near-field forecast. Pure and Applied Geophysics, 173, 369–387. doi:10.1007/s00024-015-1226-3.

    Article  Google Scholar 

  • Thomson, R. E., & Emery, W. J. (2014). Data analysis methods in physical oceanography (3rd ed., p. 716). New York: Elsevier.

    Google Scholar 

  • Thomson, R. E., Rabinovich, A. B., & Krassovski, M. V. (2007). Double jeopardy: Concurrent arrival of the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and Canada. Geophysical Research Letters, 34, L15607. doi:10.1029/2007GL030685.

  • Thomson, R. E., Fine, I. V., Rabinovich, A. B., Mihaly, S. F., Davis, E. E., Heesemann, M., & Krassovski, M. V. (2011). Observations of the 2009 Samoa tsunami by the NEPTUNE-Canada cabled observatory: Test data for an operational regional tsunami model. Geophysical Research Letters, 38, L11701. doi:10.1029/2011GL046728.

  • Titov, V. V. (2009). Tsunami forecasting. In A. Robinson & E. Bernard (Eds.), The Sea, vol. 15, Tsunamis (pp. 371–400). Cambridge, USA: Harvard University Press.

  • Titov, V., Song, T., Tang, L., Bernard, E. N., Bar-Severt, Y., & Wei, Y. (2016). Consistent estimates of tsunami energy show promise for improved early warning. Pure and Applied Geophysics,. doi:10.1007/s00024-016-1312-1.

    Google Scholar 

  • Tong, X., et al. (2010). The 2010 Maule, Chile earthquake: Down dip rupture limit revealed by space geodesy. Geophysical Research Letters, 37, L24311. doi:10.1029/2010GL045805.

  • Vich, M., & Monserrat, S. (2009). The source spectrum for the Algerian tsunami of 21 May 2003 estimated from coastal tide gauge data. Geophysical Research Letters, 36, L20610. doi:10.1029/2009GL039970.

  • Watada, S., Ksumoto, S., & Satake, K. (2014). Travel time delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. Journal of Geophysical Research: Solid Earth, 119, 4287–4310. doi:10.1002/2013JB010841.

    Google Scholar 

  • Wilson, R. I., Dengler, L. A., Legg, M. R., Long, K., & Miller, K. M. (2010). The 2010 Chilean tsunami on the California coastline. Seismological Research Letters, 81(3), 545–546.

    Google Scholar 

  • Wilson, R. I., Admire, A. R., Borrero, J. C., Dengler, L. A., Legg, M. R., Lynett, P., et al. (2013). Observations and impacts from the 2010 Chilean and 2011 Japanese tsunamis in California (USA). Pure and Applied Geophysics, 170, 1127–1147. doi:10.1007/s00024-012-0527-z.

    Article  Google Scholar 

  • Ye, L., Lay, T., Kanamori, H., & Koper, K. D. (2016). Rapidly estimated seismic source parameter for the 16 September 2015 Illapel, Chile M w 8.3 earthquake. Pure and Applied Geophysics, 173(2), 321–332. doi:10.1007/s00024-015-1202-y.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Mexican National Polytechnic Institute (IPN, project SIP 20161036). Additional support for the first author was provided by SNI (Mexican National System of Investigators). For ABR this study was partly supported by the NOAA project WE-133R-15-SE-1608 and RSF Grant 14-50-00095. We gratefully acknowledge the Mexican National Mareographic Service of the UNAM and the Laboratory of the Sea Level of the CICESE for providing us the data of coastal sea level gauges, as well as George Mungov (NOAA/NCEI, Boulder, Colorado) for assisting us with the DART data. We also thank Vasily Titov and Rachel Tang (NOAA/PMEL, Seattle, WA) and Isaac Fine (IOS, Sidney, BC) for providing us the results of numerical modeling of the 2010, 2014 and 2015 Chilean tsunamis, Paul Whitmore and Stanley Goosby (NTWC, Palmer, AK) for presenting us precise ETAs for the three tsunamis recorded by DARTs 46412, 43412 and 43413 offshore of Mexico, and Maxim Krassovski (IOS, Sidney, BC) for helping with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Rabinovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaytsev, O., Rabinovich, A.B. & Thomson, R.E. A Comparative Analysis of Coastal and Open-Ocean Records of the Great Chilean Tsunamis of 2010, 2014 and 2015 off the Coast of Mexico. Pure Appl. Geophys. 173, 4139–4178 (2016). https://doi.org/10.1007/s00024-016-1407-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1407-8

Keywords

Navigation