Skip to main content
Log in

Multiple Skew-Orthogonal Polynomials and 2-Component Pfaff Lattice Hierarchy

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper, we introduce multiple skew-orthogonal polynomials and investigate their connections with classical integrable systems. By using Pfaffian techniques, we show that multiple skew-orthogonal polynomials can be expressed by multi-component Pfaffian tau-functions upon appropriate deformations. Moreover, a two-component Pfaff lattice hierarchy, which is equivalent to the Pfaff–Toda hierarchy studied by Takasaki, is obtained by considering the recurrence relations and Cauchy transforms of multiple skew-orthogonal polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For formal definitions of type I and type II MOPs, please refer to Sect. 2.1.

  2. The Jacobi identity, also referred to as the Desnanot–Jacobi identity, is applied for an arbitrary matrix \(M=(m_{i,j})_{i,j=1}^N\)

    $$\begin{aligned} |M|\times |M^{a,b}_{c,d}|=|M^{a}_c|\times |M_d^b|-|M_d^a|\times |M_c^b|, \end{aligned}$$

    where \(|M_{i_1,\cdots ,i_r}^{j_1,\cdots ,j_r}|\) stands for the determinant of the matrix obtained from M by deleting its \((i_1,\cdots ,i_r)\)-th rows and \((j_1,\cdots ,j_r)\)-th columns.

References

  1. Adler, M., Horozov, E., van Moerbeke, P.: The Pfaff lattice and skew-orthogonal polynomials. Int. Math. Res. Not. 11, 569–588 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, M., Shiota, T., van Moerbeke, P.: Pfaff \(\tau \)-functions. Math. Ann. 322, 423–476 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adler, M., van Moerbeke, P.: Matrix integrals, Toda symmetries, Virasoro constraints and orthogonal polynomials. Duke Math J. 80, 863–911 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adler, M., van Moerbeke, P.: The spectrum of coupled random matrices. Ann. Math. 149, 921–976 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adler, M., van Moerbeke, P.: Toda versus Pfaff lattice and related polynomials. Duke Math J. 112, 1–58 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Adler, M., van Moerbeke, P., Vanhaecke, P.: Moment matrices and multi-component KP, with applications to random matrix theory. Comm. Math. Phys. 286, 1–38 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Álvarez-Femández, C., Prieto, U., Mañas, M.: Multiple orthogonal polynomials of mixed type: Gauss-Borel factorization and the multi-component 2D Toda hierarchy. Adv. Math. 227, 1451–1525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Álvarez-Fernández, C., Ariznabarreta, G., García-Ardila, J., Mañas, M., Marcellán, F.: Christoffel transformations for matrix orthogonal polynomials in the real line and the non-abelian 2D Toda lattice hierarchy. Int. Math. Res. Not. 2017, 1285–1341 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Aptekarev, A., Bleher, P., Kuijlaars, A.: Large n limit of Gaussian random matrices with external source, part II. Comm. Math. Phys. 259, 367–389 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Aptekarev, A., Branquinho, A., Marcellán, F.: Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation. J. Comp. Appl. Math. 78, 139–160 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Aptekarev, A., Derevyagin, M., Miki, H., van Assche, W.: Multidimensional Toda lattices: Continuous and discrete time. SIGMA, 12, 054, 30 pages (2016)

  12. Bertola, M., Eynard, B., Harnad, J.: Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions. Comm. Math. Phys. 263, 401–437 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bertola, M., Gekhtman, M., Szmigieski, J.: The Cauchy two-matrix model. Comm. Math. Phys. 287, 983–1014 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bertola, M., Gekhtman, M., Szmigieski, J.: Cauchy biorthogonal polynomials. J. Approx. Theory 162, 832–867 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bleher, P., Kuijlaars, A.: Random matrices with external source and multiple orthogonal polynomials. Int. Math. Res. Not. 3, 109–129 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Borodin, A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Branquinho, A., Foulquié-Moreno, A., Mañas, M.: Multiple orthogonal polynomials and random walks. arXiv:2103.13715

  18. Brézin, E., Hikami, S.: Level spacing of random matrices in an external source. Phys. Rev. E 58, 7176 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  19. Carrozza, S., Tanasa, A.: Pfaffians and nonintersecting paths in graphs with cycles: Grassmann algebra methods. Adv. Appl. Math. 93, 108–120 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chang, X., He, Y., Hu, X., Li, S.: Partial-skew-orthogonal polynomials and related integrable lattices with Pfaffian tau-functions. Comm. Math. Phys. 364, 1069–1119 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Chihara, T.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  22. Daems, E., Kuijlaars, A.: Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions. J. Approx. Theory 146, 91–114 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes 3, American Mathematical Society, (2000)

  24. Desrosiers, P., Forrester, P.: A note on biorthogonal ensembles. J. Approx. Theory 152, 167–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eynard, B., Mehta, M.: Matrices coupled in a chain: I Eigenvalue correlations. J. Phys. A 31, 4449 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Favard, J.: Sur les polyn\({\hat{o}}\)mes de Tchebicheff. C.R. Acad. Sci. Paris, 200, 2052-2053 (1935)

  27. Fidalgo, P., López, L.: Nikishin systems are perfect. Constr. Approx. 34, 297–356 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton, NJ (2010)

    Book  MATH  Google Scholar 

  29. Freud, G.: On the coefficients in the recursion formulae of orthogonal polynomials. Proc. Roy. Irish Acad. Sect. A 76, 1–6 (1976)

    MathSciNet  MATH  Google Scholar 

  30. Gilson, C., Nimmo, J.: The relation between a 2D Lotka-Volterra equation and a 2D Toda lattice. J. Nonlinear Math. Phys. 12(Supplement 2), 169–179 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Hirota, R.: The direct method in soliton theory. (Edited and translated by A. Nagai, J. Nimmo and C. Gilson), Cambridge Tracts in Mathematics 155, Cambridge University Press, (2004)

  32. Hu, X., Li, C., Nimmo, J., Yu, G.: An integrable symmetric \((2+1)\)-dimension Lotka-Volterra equation and a family of its solutions. J. Phys. A 38, 195–204 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Hu, X., Li, S.: The partition function of the Bures ensemble as the \(\tau \)-function of BKP and DKP hierarchies: continuous and discrete. J. Phys. A 50, 285201 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hu, X., Zhao, J.: Commutativity of Pfaffianization and Bäcklund transformation: the KP equation. Inverse Problem 21, 1461–1472 (2005)

    Article  ADS  MATH  Google Scholar 

  35. Ismail, M.: Classical and quantum orthogonal polynomials in one variable. Cambridge University Press, (2009)

  36. Jimbo, M., Miwa, T.: Solitons and infinite dimensional Lie algebras. Publ. RIMS, Kyoto Univ., 19: 943-1001, (1983)

  37. Kac, V., van de Leur, J.: The geometry of spinors and the multicomponent BKP and DKP hierarchies, in The bispectral problem (Montreal, PQ, 1997), 159–202, CRM Proc. Lecture Notes, 14, Amer. Math. Soc., Providence, RI, (1998)

  38. Kakei, S.: Orthogonal and symplectic matrix integrals and coupled KP hierarchy. J. Phys. Soc. Jpn. 68, 2875–2879 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Kodama, Y., Pierce, V.: The Pfaff lattice on symplectic matrices. J. Phys. A 43, 055206 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Li, S.: Matrix orthogonal polynomials, non-abelian Toda lattice and Bäcklund transformation. https://doi.org/10.48550/arXiv.2109.00671

  41. Li, C., Li, S.: The Cauchy two-matrix model, C-Toda lattice and CKP hierarchy. J. Nonlinear Sci. 29, 3–27 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Li, Shi-Hao.: Yu, Guo-Fu: Integrable lattice hierarchies behind Cauchy two-matrix model and Bures ensemble. Nonlinearity 35, 5109–5149 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Lundmark, H., Szmigieski, J.: Degasperis-Procesi peakons and the discrete cubic string. Int. Math. Res. Papers 2005, 53–116 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Martínez-Finkelshtein, A., van Assche, W.: What is ... a multiple orthogonal polynomials. Notices AMS, 63, 1029-1031 (2016)

  45. Mehta, M.: Zeros of some bi-orthogonal polynomials. J. Phys. A 35, 517 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Muttalib, K.: Random matrix models with additional interactions. J. Phys. A 28, L159 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  47. Nikishin, E., Sorokin, V.: Rational approximations and orthogonality. Translations of Mathematical Monographs, Vol. 92, Amer. Math. Soc., Providence, RI, (1991)

  48. Ohta, Y.: Special solutions of discrete integrable systems. Dis. Integrable Syst. Lecture Notes in Phys. 644, 57–83 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Ormerod, C., Witte, N., Forrester, P.: Connection preserving deformations and \(q\)-semi-classical orthogonal polynomials. Nonlinearity 24, 2405 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Santini, P., Nieszporski, M., Doliwa, A.: An integrable generalization of the Toda law to the square lattice. Phys. Rev. E 70, 056615 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  51. Shiota, T.: Prym varieties and soliton equations in “Infinite dimensional Lie algebras and groups”, ed. V. Kac, Advanced Ser. in Math. Phys., vol. 7, World Scientific, 407-448 (1989)

  52. Shobat, J.: A differential equation for orthogonal polynomials. Duke Math J. 5, 401–417 (1939)

    MathSciNet  Google Scholar 

  53. Stembridge, J.: Nonintersecting paths, Pfaffians, and plane partitions. Adv. Math. 83, 96–131 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  54. Takasaki, K.: Auxiliary linear problem, difference Fay identities and dispersionless limit of Pfaff-Toda hierarchy. SIGMA, 5, 109, 34 pages (2009)

  55. Tsujimoto, S., Kondo, K.: Molecule solutions to discrete equations and orthogonal polynomials. Surikaisekikenkyusho Kokyuroku 1170, 1–8 (2000)

    MathSciNet  MATH  Google Scholar 

  56. Willox, R.: On a generalized Tzitzeica equation. Glasgow Math. J 47, 221–231 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Peter Forrester for his useful comments.

Funding

S. Li was partially supported by the National Natural Science Foundation of China (Grant No. 12101432, 12175155), and G. Yu was supported by National Natural Science Foundation of China (Grant no. 12371251).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Jian Shen.

Ethics declarations

Conflict of interest

There is no any potential conflict of interest.

Additional information

Communicated by Nikolai Kitanine.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Pfaffian identities

There are two different kinds of Pfaffian identities, c.f. [31, eq. 2.95’ & 2.96’]

$$\begin{aligned}&\text {pf}(*,a_1,a_2,a_3,a_4)\text {pf}(*)=\text {pf}(*,a_1,a_2)\text {pf}(*,a_3,a_4)\nonumber \\&\quad -\text {pf}(*,a_1,a_3)\text {pf}(*,a_2,a_4)+\text {pf}(*,a_1,a_4)\text {pf}(*,a_2,a_3), \end{aligned}$$
(A.1a)
$$\begin{aligned}&\text {pf}(\star ,a_1,a_2,a_3)\text {pf}(\star ,a_4)=\text {pf}(\star ,a_2,a_3,a_4)\text {pf}(\star ,a_1)\nonumber \\&\quad -\text {pf}(\star ,a_1,a_3,a_4)\text {pf}(\star ,a_2)+\text {pf}(\star ,a_1,a_2,a_4)\text {pf}(\star ,a_3), \end{aligned}$$
(A.1b)

where \(*\) and \(\star \) are sets of even and odd number symbols, respectively.

Appendix B. Derivative Formulas for Wronskian-Type Pfaffians

Wronskian-type Pfaffians are well investigated in soliton theory due to its wide applications in coupled KP theory. In [31, Sec. 3.4], Pfaffian element \(\text {pf}(i,j)\) satisfying the differential rules with respect to the variables \(\textbf{t}=(t_1,t_2,\cdots )\) by

$$\begin{aligned} \partial _{t_n}\text {pf}(i,j)=\text {pf}(i+n,j)+\text {pf}(i,j+n) \end{aligned}$$
(B.1)

was called Wronskian-type Pfaffians. For more details about Wronskian-type Pfaffian and its discrete counterparts, please refer to [48]. It was shown that if Pfaffian elements satisfy (B.1), then

$$\begin{aligned} \partial _{t_n}\text {Pf}(i_0,i_1,\cdots ,i_{2N-1})=\sum _{k=0}^{2N-1}\text {Pf}(i_0,\cdots ,i_k+n,\cdots ,i_{2N-1}). \end{aligned}$$

This was proved by induction.

In this paper, we need to introduce 2-component Pfaffian \(\tau \)-functions, indexed by \({\mathcal {I}}=\{i_0,\cdots ,i_n\}\) and \({\mathcal {J}}=\{j_0,\cdots ,j_m\}\) with \(n,m\in {\mathbb {N}}\) and \(n+m\in 2{\mathbb {N}}\). Pfaffian elements in this case should satisfy a 2-component Wronskian-type generalization (c.f. Prop 3.3)

$$\begin{aligned}&\partial _{t_k}\text {pf}(i_\alpha ,i_\beta )=\text {pf}(i_\alpha +k,i_\beta )+\text {pf}(i_\alpha ,i_\beta +k),\\&\partial _{t_k}\text {pf}(i_\alpha ,j_\beta )=\text {pf}(i_\alpha +k,j_\beta ),\\&\partial _{t_k}\text {pf}(j_\alpha ,j_\beta )=0,\\&\partial _{s_k}\text {pf}(j_\alpha ,j_\beta )=\text {pf}(j_\alpha +k,j_\beta )+\text {pf}(j_\alpha ,j_\beta +k),\\&\partial _{s_k}\text {pf}(i_\alpha ,j_\beta )=\text {pf}(i_\alpha ,j_\beta +k),\\&\partial _{s_k}\text {pf}(i_\alpha ,i_\beta )=0, \end{aligned}$$

and then, we have the following proposition.

Proposition B.1

If Pfaffian elements satisfy the above derivative relations, then one has

$$\begin{aligned}&\partial _{t_k}\text {Pf}(i_0,\cdots ,i_n,j_0,\cdots ,j_m)=\sum _{\alpha =0}^n \text {Pf}(i_0,\cdots ,i_\alpha +k,\cdots ,i_n,j_0,\cdots ,j_m),\\&\partial _{s_k}\text {Pf}(i_0,\cdots ,i_n,j_0,\cdots ,j_m)=\sum _{\alpha =0}^m \text {Pf}(i_0,\cdots ,i_n,j_0,\cdots ,j_\alpha +k,\cdots ,j_m). \end{aligned}$$

Proof

Here, we only prove the first equation by using induction, and the second one can be similarly proved. Note that

$$\begin{aligned} \partial _{t_k}\text {Pf}(i_0,\cdots ,i_n,j_0,\cdots ,j_m)&=\partial _{t_k}\left( \sum _{i_l\in {\mathcal {I}}}(-1)^{l-1}\text {pf}(i_0,i_l)\text {Pf}(i_1,\cdots ,{\hat{i}}_l,\cdots ,i_n,j_0,\cdots ,j_m)\right. \\&\qquad \left. +\sum _{j_l\in {\mathcal {J}}}(-1)^{n+l}\text {pf}(i_0,j_l)\text {Pf}(i_1,\cdots ,i_n,j_0,\cdots ,{\hat{j}}_l,\cdots ,j_m)\right) \end{aligned}$$

where the first part is equal to

$$\begin{aligned}&\sum _{i_l\in {\mathcal {I}}}(-1)^{l-1}\text {pf}(i_0+k,i_l)\text {Pf}(i_1,\cdots ,{\hat{i}}_l,\cdots ,i_n,j_0,\cdots ,j_m) \end{aligned}$$
(B.2a)
$$\begin{aligned}&+\sum _{i_l\in {\mathcal {I}}}(-1)^{l-1}\text {pf}(i_0,i_l+k)\text {Pf}(i_1,\cdots ,{\hat{i}}_l,\cdots ,i_n,j_0,\cdots ,j_m) \end{aligned}$$
(B.2b)
$$\begin{aligned}&+\sum _{i_l\in {\mathcal {I}}}(-1)^{l-1}\text {pf}(i_0,i_l)\sum _{\alpha \ne l}\text {Pf}(i_1,\cdots ,i_\alpha +k,\cdots ,{\hat{i}}_l,\cdots ,i_n,j_0,\cdots ,j_m), \end{aligned}$$
(B.2c)

while the derivative of the second part is equal to

$$\begin{aligned}&\sum _{j_l\in {\mathcal {J}}}(-1)^{n+l}\text {pf}(i_0+k,j_l)\text {Pf}(i_1,\cdots ,i_n,j_0,\cdots ,{\hat{j}}_l,\cdots ,j_m) \end{aligned}$$
(B.3a)
$$\begin{aligned}&\quad +\sum _{j_l\in {\mathcal {J}}}(-1)^{n+l}\text {pf}(i_0,j_l)\sum _{\alpha =1}^n\text {Pf}(i_1,\cdots ,i_\alpha +k,\cdots ,i_n,j_0,\cdots ,{\hat{j}}_l,\cdots ,j_m). \end{aligned}$$
(B.3b)

Therefore, by summing (B.2a) and (B.3a) up, one obtains

$$\begin{aligned} \text {Pf}(i_0+k,i_1,\cdots ,i_n,j_0,\cdots ,j_m). \end{aligned}$$

The summation of rest three equations is equal to

$$\begin{aligned} \sum _{\alpha =1}^n \text {Pf}(i_0,\cdots ,i_\alpha +k,\cdots ,i_n,j_0,\cdots ,j_m), \end{aligned}$$

and our proof is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SH., Shen, BJ., Xiang, J. et al. Multiple Skew-Orthogonal Polynomials and 2-Component Pfaff Lattice Hierarchy. Ann. Henri Poincaré (2023). https://doi.org/10.1007/s00023-023-01382-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00023-023-01382-2

Mathematics Subject Classification

Navigation