Skip to main content
Log in

Multiplicity and Concentration of Solutions for a Fractional Magnetic Kirchhoff Equation with Competing Potentials

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

This paper is concerned with the following fractional electromagnetic Kirchhoff equation with competing potentials and critical nonlinearity

$$\begin{aligned} \left( a\varepsilon ^{2s}+b\varepsilon ^{4s-3} [u]_{A/\varepsilon }^{2}\right) (-\Delta )_{A/\varepsilon }^{s}u+V(x)u=f(|u|^{2})u+K(x)|u|^{2^{*}_{s}-2}u \quad \text{ in }\; {\mathbb {R}}^{3}, \end{aligned}$$

where \( \varepsilon >0 \) is a small parameter, \(A\in C^{0,\alpha }({\mathbb {R}}^{3},{\mathbb {R}}^{3} ) \) with exponent \(\alpha \in (0,1]\), \((-\Delta )_{A/\varepsilon }^s\) is the fractional magnetic operator with \(s\in (\frac{3}{4}, 1)\), \(2_{s}^{*} =\frac{6}{3-2s}\) is the fractional critical exponent, and \(a, b>0\) are fixed constants. Assuming that V, K and f satisfy some suitable conditions, we establish the multiplicity and concentration of solutions by variational methods and Ljusternik–Schnirelmann theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Miyagaki, O.H.: Existence and concentration of solution for a class of fractional elliptic equation in \({\mathbb{R}}^{N}\) via penalization method. Calc. Var. Partial Differ. Equ. 55, 19 pp (2016)

  2. Ambrosio, V.: Existence and concentration results for some fractional Schrödinger equations in \( R^{N} \) with magnetic fields. Commun. Partial Differ. Equ. 44, 637–680 (2019)

    Article  MATH  Google Scholar 

  3. Ambrosio, V.: Multiplicity and concentration of solutions for a fractional Kirchhoff equation with magnetic field and critical growth. Ann. Henri Poincaré 20, 2717–2766 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, V.: On a fractional magnetic Schrödinger equation in \( {\mathbb{R} } \) with exponential critical growth. Nonlinear Anal. 183, 117–148 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, V.: Multiple concentrating solutions for a fractional Kirchhoff equation with magnetic fields. Discret. Contin. Dyn. Syst. 40, 781–815 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio, V., d’Avenia, P.: Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity. J. Differ. Equ. 264, 3336–3368 (2018)

    Article  ADS  MATH  Google Scholar 

  7. Ambrosio, V., Isernia, T.: A multiplicity result for a fractional Kirchhoff equation in \({\mathbb{R}}^{N}\) with a general nonlinearity. Commun. Contemp. Math. 20, 17 pp (2018)

  8. Arioli, G., Szulkin, A.: A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170, 277–295 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benci, V., Cerami, G.: The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch. Ration. Mech. Anal. 114, 79–93 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, B., Wu, X.: Existence results of positive solutions of Kirchhoff type problems. Nonlinear Anal. 71, 4883–4892 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, C., Kuo, Y., Wu, T.: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chen, S., Li, Y., Yang, Z.: Multiplicity and concentration of nontrivial nonnegative solutions for a fractional Choquard equation with critical exponent. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114, 35pp (2020)

  13. Cingolani, S.: Semiclassical stationary states of Nonlinear Schrödinger equations with an external magnetic field. J. Differ. Equ. 188, 52–79 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Di, N.E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. d’Avenia, P., Squassina, M.: Ground states for fractional magnetic operators. ESAIM Control Optim. Calc. Var. 24, 1–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ding, Y., Liu, X.: Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities. Manuscripta Math. 140, 51–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fan, H.: Positive solutions for a Kirchhoff-type problem involving multiple competitive potentials and critical Sobolev exponent. Nonlinear Anal. 198, 35pp (2020)

  18. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A. 142, 1237–1262 (2012)

    Article  MATH  Google Scholar 

  19. Guo, Y., Sun, H., Cui, N.: Existence and multiplicity results for the fractional magnetic Schrödinger equations with critical growth. J. Math. Phys. 62 (2021)

  20. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R} }^{3}\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  ADS  MATH  Google Scholar 

  21. He, X., Zou, W.: Multiplicity of concentrating solutions for a class of fractional Kirchhoff equation. Manuscripta Math. 158, 159–203 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ji, C., Rǎdulescu, V.: Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger equation. Calc. Var. Partial Differ. Equ. 59, 28pp (2020)

  23. Ji, C., Rǎdulescu, V.: Concentration phenomena for magnetic Kirchhoff equations with critical growth. Discret. Contin. Dyn. Syst. 41(12), 5551–5577 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ji, C., Rădulescu, V.: Multiplicity and concentration of solutions for Kirchhoff equations with magnetic field. Adv. Nonlinear Stud. 21(3), 501–521 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kirchhoff, G.: Mechanik, p. 3. Teubner, Leipzig (1883)

    Google Scholar 

  26. Kurata, K.: Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Anal. 41, 763–778 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, G.: Some properties of weak solutions of nonlinear scalar field equations. Ann. Acad. Sci. Fenn. Ser. A I Math. 15, 27–36 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case I. Ann. Inst. H. Poincar Anal. Non Linéire. 1, 109–145 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Liang, S., Repovš, D., Zhang, B.: On the fractional Schrödinger–Kirchhoff equations with electromagnetic fields and critical nonlinearity. Comput. Math. Appl. 75, 1778–1794 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Liu, Z., Squassina, M., Zhang, J.: Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension. NoDEA Nonlinear Differ. Equ. Appl. 24, 32pp (2017)

  31. Mao, A., Mo, S.: Ground state solutions to a class of critical Schrödinger problem. Adv. Nonlinear Anal. 11, 96–127 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mohammed, A., Vieri, B., Filippo, G.: Bending and stretching energies in a rectangular plate modeling suspension bridges. Nonlinear Anal. 106, 18–34 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nie, J.: Existence and multiplicity of nontrivial solutions for a class of Schrödinger–Kirchhoff-type equations. J. Math. Anal. Appl. 417, 65–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäser Boston, Inc., Boston, x+162 pp (1996)

  35. Yang, L., An, T.: Infinitely many solutions for magnetic fractional problems with critical Sobolev–Hardy nonlinearities. Math. Methods Appl. Sci. 41, 9607–9617 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Zhang, J., Lou, Z., Ji, Y., Shao, W.: Ground state of Kirchhoff type fractional Schrödinger equations with critical growth. J. Math. Anal. Appl. 462, 57–83 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Y., Tang, X., Rădulescu, V.D.: Small perturbations for nonlinear Schrödinger equations with magnetic potential. Milan J. Math. 88, 479–506 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research has been supported by National Natural Science Foundation of China (No. 12371121 and 11971392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengbing Deng.

Additional information

Communicated by Nader Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Luo, W. Multiplicity and Concentration of Solutions for a Fractional Magnetic Kirchhoff Equation with Competing Potentials. Ann. Henri Poincaré (2023). https://doi.org/10.1007/s00023-023-01372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00023-023-01372-4

Mathematics Subject Classification

Navigation