Skip to main content
Log in

Lower Bound to the Entanglement Entropy of the XXZ Spin Ring

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study the free XXZ quantum spin model defined on a ring of size L and show that the bipartite entanglement entropy of certain eigenstates belonging to the first energy band above the vacuum ground state satisfies a logarithmically corrected area law. This applies in particular to eigenstates corresponding to the lowest eigenenergy above the ground state. To this end, we develop a new perturbational approach, which allows us to control the eigenvalues of reduced states in the XXZ model in terms of the corresponding reduced states in the Ising model. Along the way, we show a Combes–Thomas estimate for fiber operators which can also be applied to discrete many-particle Schrödinger operators on more general translation-invariant graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here, \(d_L^N(x,{x,{\mathcal {V}}_{L,1}^N})\) is a shorthand notation for \(\min _{y\in \mathcal {V}_{L,1}^N}d_L^N(x,y)\). Analogously for any distance between sets of configurations.

References

  1. Abdul-Rahman, H., Fischbacher, C., Stolz, G.: Entanglement bounds in the XXZ quantum spin chain. Annales Henri Poincaré 21, 2327–2366 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Beaud, V., Warzel, S.: Low-energy fock-space localization for attractive hard-core particles in disorder. Annales Henri Poincaré 18, 3143–3166 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Beaud, V., Warzel, S.: Bounds on the entanglement entropy of droplet states in the XXZ spin chain. J. Math. Phys. 59, 012109-1–11 (2018)

  4. Combes, J.M., Hislop, P.D., Nakamura, S.: The \(L^p\)-theory of the spectral shift function, the Wegner estimate, and the integrated density of states for some random operators. Commun. Math. Phys. 218, 113–130 (2001)

    Article  ADS  MATH  Google Scholar 

  5. Eisert, J., Cramer, M., Plenio, M.B.: Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Elgart, A., Klein, A., Stolz, G.: Manifestations of dynamical localization in the disordered XXZ spin chain. Commun. Math. Phys. 361, 1083–1113 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Elgart, A., Klein, A., Stolz, G.: Many-body localization in the droplet spectrum of the random XXZ quantum spin chain. J. Funct. Anal. 275, 211–258 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elgart, A., Pastur, L., Shcherbina, M.: Large block properties of the entanglement entropy of free disordered Fermions. J. Stat. Phys. 166, 1092–1127 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Fischbacher, C., Stolz, G.: The infinite XXZ quantum spin chain revisited: structure of low lying spectral bands and gaps. Math. Model. Nat. Phenom. 9, 44–72 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fischbacher, C., Stolz, G.: Droplet states in quantum XXZ spin systems on general graphs. J. Math. Phys. 59, 051901 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Haeseler, S., Keller, M.: Generalized Solutions and Spectrum for Dirichlet Forms on Graphs. Progress in Probability, vol. 64. Birkhäuser/Springer Basel AG, Basel (2011)

  12. Hastings, M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. Theory Exp. 8, P08024-1–14 (2007)

  13. Iglói, F., Szatmári, Z., Lin, Y.-C.: Entanglement entropy dynamics of disordered quantum spin chains. Phys. Rev. B 85, 094417-1–8 (2012)

  14. Laflorencie, N.: Quantum entanglement in condensed matter systems. Phys. Rep. 646, 1–59 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Leschke, H., Sobolev, A.V., Spitzer, W.: Scaling of Rényi entanglement entropies of the free Fermi-gas ground state: a rigorous proof. Phys. Rev. Lett. 112, 160403-1–5 (2014)

  16. Leschke, H., Sobolev, A.V., Spitzer, W.: Trace formulas for Wiener–Hopf operators with applications to entropies of free fermionic equilibrium states. J. Funct. Anal. 273, 1049–1094 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Müller, P., Pastur, L., Schulte, R.: How much delocalisation is needed for an enhanced area law of the entanglement entropy? Commun. Math. Phys. 376, 649–679 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Müller, P., Schulte, R.: Stability of the enhanced area law of the entanglement entropy (2020), arXiv:2004.02700

  19. Nachtergaele, B., Spitzer, W., Starr, S.: Droplet excitations for the spin-1/2 XXZ chain with kink boundary conditions. Annales Henri Poincaré 8, 165–201 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Nachtergaele, B., Starr, S.: Droplet states in the XXZ Heisenberg chain. Commun. Math. Phys. 218, 569–607 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Pastur, L., Slavin, V.: Area law scaling for the entropy of disordered quasifree fermions. Phys. Rev. Lett. 113, 150404-1–5 (2014)

  22. Pastur, L., Slavin, V.: The absence of the selfaveraging property of the entanglement entropy of disordered free fermions in one dimension. J. Stat. Phys. 170, 207–220 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Pfirsch, B., Sobolev, A.V.: Formulas of Szegő type for the periodic Schrödinger operator. Commun. Math. Phys. 358, 675–704 (2018)

    Article  ADS  MATH  Google Scholar 

  24. Pouranvari, M., Yang, K.: Maximally entangled mode, metal-insulator transition, and violation of entanglement area law in noninteracting fermion ground states. Phys. Rev. B 89, 115104-1–5 (2014)

  25. Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, vol. 265. Springer, Dordrecht (2012)

    Book  MATH  Google Scholar 

  26. Schulte, R.: On Enhanced Area Laws of the Entanglement Entropy, PhD Thesis, Ludwig–Maximilians–Universität, Munich (2020)

  27. Stolz, G.: Aspects of the mathematical theory of disordered quantum spin chains, analytic trends in mathematical physics. Contemp. Math. 741, 163–197 (2020)

    Article  MATH  Google Scholar 

  28. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 66 (2003)

    Article  Google Scholar 

  29. Wojtaszczyk, P.: Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, vol. 25. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  30. Wolf, M.M.: Violation of the entropic area law for fermions. Phys. Rev. Lett. 96, 010404-1–4 (2006)

  31. Yang, C.N., Yang, C.P.: One-dimensional chain of anisotropic spin–spin interactions. I. Proof of Bethe’s hypothesis for ground state in a finite system. Phys. Rev. 150, 321–327 (1966)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.F. is grateful to the Institut Mittag-Leffler in Djursholm, Sweden, where some of this work was done as part of the program Spectral Methods in Mathematical Physics in Spring 2019. R.S. was funded by Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy—EXC-2111—390814868 and LMUMentoring. It is also our pleasure to thank Peter Müller and Günter Stolz for helpful discussions as well as encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Fischbacher.

Additional information

Communicated by Alain Joye.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 A.1. Uniqueness of Fiber Operator Ground States

Lemma A.1

Let \(\Delta >2\), let \(L,N\in \mathbb {N}\) with \(1<N<L-1\). Then, for any \(\gamma \in \mathcal V_L\), the operator \(\hat{H}_{L,\gamma }^N\) has exactly one eigenvalue in \([1-\frac{1}{\Delta },1]\) and no eigenvalue in \((1,2-\frac{2}{\Delta })\).

Proof

By Lemma 3.5, we get

$$\begin{aligned} \hat{H}_{L,\gamma }^N=-\frac{1}{2\Delta }\hat{A}^N_{L,\gamma }+\hat{W}_{L,\gamma }^N\ge \left( 1-\frac{1}{\Delta }\right) \hat{W}_{L,\gamma }^N\,. \end{aligned}$$
(A.1)

There exists exactly one element \(\hat{x}_0\in \widehat{\mathcal {V}}_L^N\cap \mathcal V_{L,1}^N\). It satisfies \(W(\hat{x}_0)=1\). For any other \(\hat{x}\in \widehat{\mathcal {V}}_L^N{\setminus }\{\hat{x}_0\}\), we have \(W(\hat{x})\ge 2\). Let \(\phi _{L,\gamma ,0}^N\in \mathbb S_{L,\gamma }^N\) be defined by \(\phi _{L,\gamma ,0}^N(\sigma ,{\hat{x}}):=\delta _{\gamma ,\sigma }\delta _{{\hat{x}}_0,{\hat{x}}}\).

Hence, the operator

$$\begin{aligned}{} & {} \hat{H}_{L,\gamma }^N+\left( 1-\frac{1}{\Delta }\right) |\phi _{L,\gamma ,0}^N\rangle \!\langle \phi _{L,\gamma ,0}^N| \nonumber \\{} & {} \quad \ge \left( 1-\frac{1}{\Delta }\right) \left( \hat{W}_{L,\gamma }^N+ |\phi _{L,\gamma ,0}^N\rangle \!\langle \phi _{L,\gamma ,0}^N|\right) \ge \left( 2-\frac{2}{\Delta }\right) \end{aligned}$$
(A.2)

is a rank-one perturbation of \(\hat{H}_{L,\gamma }^N\). Therefore, the unperturbed operator \({\hat{H}}_{L,\gamma }^N\) has at most one eigenvalue below \((2-\frac{2}{\Delta })\). On the other hand, since \(\langle \phi _{L,\gamma ,0}^N,\hat{H}_{L,\gamma }^N\phi _{L,\gamma ,0}^N\rangle =1\), there exists at least one eigenvalue which is less than or equal to 1. Since for \(\Delta >2\), we get \(1<2-\frac{2}{\Delta }\), this concludes the proof. \(\square \)

For \(\gamma =0\), it follows from the explicit structure of the fiber operator \(\hat{H}_{L,0}^N\) that it has a unique ground state \(\hat{\varphi }_{L,0}^N\) which can be chosen to be strictly positive. The same is true for the original operator \(H_L^N\). This will allow us to conclude that \(\varphi _{L,0}^N:=(\mathfrak {F}_L^N)^*\hat{\varphi }_{L,0}^N\) is the ground state of \(H_L^N\). The main tool for our result will be an idea presented in [31], where the existence of a strictly positive ground state for the XXZ model on the ring was established; however, let us also point out that this piece of the proof also follows from the Allegretto–Piepenbrink theorem shown in [11].

Lemma A.2

Let \(N,L\in \mathbb {N}\), \(0<N<L\). Moreover, let \(E_0\equiv E_0(L,N,\Delta )=\inf \sigma (\hat{H}_{L,0})\). Then, \(E_0\) is non-degenerate and the corresponding eigenvector \(\hat{\varphi }_{L,0}^N\in \mathbb {S}_{L,0}^N\) can be chosen such that \(\Vert \hat{\varphi }_{L,0}^N\Vert =1\) and \(\hat{\varphi }_{L,0}^N(0,\hat{x})>0\) for all \(\hat{x}\in \widehat{\mathcal {V}}_L^N\). In addition, \(\varphi _{L,0}^N:=(\mathfrak {F}_L^N)^*\hat{\varphi }_{L,0}^N\) is the unique ground state of \(H_L^N\).

Proof

Firstly, note that if we choose the constant \(C>2N\ge \Vert W_L^N\Vert =\Vert \hat{W}^N_{L,0}\Vert \), we then get that the matrix representations of both operators and have only non–negative entries. Moreover, note that since \(A_1\) and \(A_2\) are irreducible, we can choose \(D\ge \dim (\mathbb H_L^N)\) large enough, such that the matrix entries of \(A_1^D\) and \(A_2^D\) will all be strictly positive. Hence, by the Perron–Frobenius theorem, the largest eigenvalue of each of these operators \(A_1^D\) and \(A_2^D\) is positive, non-degenerate and the corresponding eigenfunctions can be chosen to be strictly positive. Let \(\varphi _{L,0}^N\) and \(\hat{\varphi }_{L,0}^N\) denote the eigenfunctions for \(A_1^D\) and \(A_2^D\), respectively, that satisfy these properties. Clearly, \(\varphi _{L,0}^N\) and \(\hat{\varphi }_{L,0}^N\) will then be the eigenfunctions of \(H_L^N\) and \(\hat{H}_{L,0}^N\) corresponding to the respective minima \(E_0\) and \(\hat{E}_0\) of the spectra. Now, since \(H_L^N\) and \(\hat{H}_L^N\) are unitarily equivalent via the Fourier transform \(\mathfrak {F}_L^N\), the function \((\mathfrak {F}_L^N)^*\hat{\varphi }_{L,0}^N\) is also an eigenfunction of \(H_L^N\) and thus \(\hat{E}_0\in \sigma (H_L^N)\). However, from the explicit form of \((\mathfrak {F}_L^N)^*\) as given in (3.13), one sees that since \(\hat{\varphi }_{L,0}^N\in \mathbb S_{L,0}^N\) we get that \((\mathfrak {F}_L^N)^*\hat{\varphi }_{L,0}^N\) is a strictly positive eigenfunction of \(H_L^N\). Thus, we conclude that \((\mathfrak {F}_L^N)^*\hat{\varphi }_{L,0}^N=\varphi _{L,0}^N\) and consequently \(E_0=\hat{E}_0\). \(\square \)

1.2 A.2 An Auxiliary Result

The following lemma is an adaptation of a similar result in [1, Thm. 6.1].

Lemma A.3

Let \(N\in \mathbb {N}\) and

$$\begin{aligned} \mathcal X^N:=\{\chi =(\chi _1,\hdots ,\chi _N)\subseteq \mathbb {N}_0^N:\;\chi _1\le \hdots \le \chi _N\}. \end{aligned}$$
(A.3)

Then, for all \(\mu \ge \ln 2\) we have

$$\begin{aligned} \sum _{\chi \in \mathcal X^N\setminus \{0\}}\text {e}^{-\mu |\chi |_1}\le 30\text {e}^{-\mu }, \end{aligned}$$
(A.4)

where \(|\cdot |_1\)-denotes the \(\ell ^1\)-norm of \(\mathbb {Z}^N\).

Proof

Let \(\Psi :\;\mathbb {N}^{N}_0\rightarrow \mathcal X^N\) with

$$\begin{aligned} x\mapsto \Psi (x):=(\Psi _1(x),\hdots ,\Psi _N(x))\,, \end{aligned}$$
(A.5)

where for each \(j\in \{1,2,\dots ,N\}\), we have defined \(\psi _j(x):=\sum _{i=1}^jx_i\). Note that \(\Psi \) is a bijection.

For any \(x\in \mathbb {N}^{N}_0\), we therefore get

$$\begin{aligned} \sum _{j=1}^N\Psi _j(x)=\sum _{k=1}^N(N-k+1)x_k \end{aligned}$$
(A.6)

and \(\Psi \) is a bijection, we have

$$\begin{aligned} \sum _{\chi \in \mathcal X^N}\text {e}^{-\mu |\chi |_1}= \sum _{x\in \mathbb {N}^N_0}\text {e}^{-\mu |\Psi (x)|_1}=\sum _{x\in \mathbb {N}^N_0}\prod _{k=1}^N\text {e}^{-\mu (N-k+1)x_k}\,, \end{aligned}$$
(A.7)

which yields

$$\begin{aligned} \sum _{\chi \in \mathcal X^N}\text {e}^{-\mu |\chi |_1}=\prod _{k=1}^N\sum _{y=0}^\infty \text {e}^{-\mu y(N-k+1) }=\prod _{k=1}^N\frac{1}{1-\text {e}^{-\mu (N-k+1)}}. \end{aligned}$$
(A.8)

This gives us the following estimate, which is uniform in N:

$$\begin{aligned} \sum _{\chi \in \mathcal X^N}\text {e}^{-\mu |\chi |_1}\le \prod _{m=1}^\infty \frac{1}{1-\text {e}^{-\mu m}}\le \exp \Big (\frac{2\text {e}^{-\mu }}{1-\text {e}^{-\mu }}\Big )\,, \end{aligned}$$
(A.9)

where we have used that \(\ln (1-\lambda )^{-1}\le 2\lambda \), whenever \(\lambda \in (0,1/2)\). Hence,

$$\begin{aligned} \sum _{\chi \in \mathcal X^N\setminus \{0\}}\text {e}^{-\mu |\chi |_1}\le \exp \Big (\frac{2\text {e}^{-\mu }}{1-\text {e}^{-\mu }}\Big )-1\le 4\text {e}^2\text {e}^{-\mu }, \end{aligned}$$
(A.10)

since \(\text {e}^x-1\le x\text {e}^x\) for all \(x\ge 0\) and \(\text {e}^{-\mu }\le 2^{-1}\) for \(\mu \ge \ln 2\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischbacher, C., Schulte, R. Lower Bound to the Entanglement Entropy of the XXZ Spin Ring. Ann. Henri Poincaré 24, 3967–4012 (2023). https://doi.org/10.1007/s00023-023-01318-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01318-w

Navigation