Skip to main content
Log in

Phase Transition in the Peierls Model for Polyacetylene

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider the Peierls model for closed polyactetylene chains with an even number of carbon atoms as well as infinite chains, in the presence of temperature. We prove the existence of a critical temperature below which the chain is dimerized and above which it is 1-periodic. The chain behaves like an insulator below the critical temperature and like a metal above it. We characterize the critical temperature in the thermodynamic limit model and prove that it is exponentially small in the rigidity of the chain. We study the phase transition around this critical temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bach, V., Lieb, E.H., Solovej, J.P.: Generalized Hartree-Fock theory and the Hubbard model. J. Stat. Phys. 76(1), 3–89 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Fröhlich, H.: On the theory of superconductivity: the one-dimensional case. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 223(1154), 296–305 (1954)

    ADS  MATH  Google Scholar 

  3. Garcia Arroyo, M., Séré, E.: Existence of kink solutions in a discrete model of the polyacetylene molecule. Preprint hal-00769075 (2012)

  4. Jones, H.: Applications of the Bloch theory to the study of alloys and of the properties of bismuth. Proc. R. Soc. Lond. Ser. A-Math. Phys. Sci. 147(861), 396–417 (1934)

    ADS  Google Scholar 

  5. Kennedy, T., Lieb, E.H.: Proof of the Peierls instability in one dimension. In: Condensed Matter Physics and Exactly Soluble Models, pp. 85–88. Springer (2004)

  6. Kivelson, S., Heim, D.: Hubbard versus Peierls and the Su-Schrieffer-Heeger model of polyacetylene. Phys. Rev. B 26(8), 4278 (1982)

    Article  ADS  Google Scholar 

  7. Lieb, E.H., Nachtergaele, B.: Stability of the Peierls instability for ring-shaped molecules. Phys. Rev. B 51(8), 4777 (1995)

    Article  ADS  MATH  Google Scholar 

  8. Lieb, E.H., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys 16(3), 407–466 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Macris, N., Nachtergaele, B.: On the flux phase conjecture at half-filling: an improved proof. J. Stat. Phys. 85(5–6), 745–761 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Peierls, R.E.: Quantum Theory of Solids. Clarendon Press (1996)

  11. Pouget, J.P., Kagoshima, S., Schlenker, C., Marcus, J.: Evidence for a Peierls transition in the blue bronzes K0. 30MoO 3 and Rb0. 30MoO3. J. de Phys. Lettres 44(3), 113–120 (1983)

    Article  Google Scholar 

  12. Su, W.P., Schrieffer, J.R., Heeger, A.: Solitons in polyacetylene. Phys. Rev. Lett. 42(25), 1698 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éric Séré.

Additional information

Communicated by Vieri Mastropietro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Gain of Energy in the Thermodynamic Limit

Appendix A: Gain of Energy in the Thermodynamic Limit

In this section, we prove that the gain of energy due to Peierls dimerization is exponentially small in \(\mu \). We focus on the thermodynamic limit case (although the proof is similar in the \(L \in 2 \mathbb {N}\) case). We also focus only on the null temperature case \(\theta = 0\). In this case, the thermodynamic energy reads

$$\begin{aligned} g_0(W,\delta ) = \frac{\mu }{2} ((W - 1)^2 + \delta ^2) - \frac{4}{\pi }\int _{0}^{\pi /2}\sqrt{W^2\sin ^2{(s)} + \delta ^2\cos ^2{(s)}} {\textrm{d}}s.\qquad \end{aligned}$$
(23)

We introduce

$$\begin{aligned} f_0:= \min \left\{ g_0(W, \delta ), \ W \ge 0, \ \delta \ge 0\right\} , \quad \text {and} \quad f_{0, \textrm{per}}:= \min \left\{ g_0(W, 0), \ W \ge 0 \right\} . \end{aligned}$$

In other words, \(f_0\) is the minimum of \(g_0\) over 2–periodic (and all) configurations, and \(f_{0, \textrm{per}}\) is the minimum over 1-periodic configurations. We prove the following

Theorem A.1

There is \(C > 0\) such that, for all \(\mu \) large enough,

$$\begin{aligned} 0 < f_{0, \textrm{per}} - f_0 \le C {\textrm{e}}^{- \frac{\pi }{2} \mu }. \end{aligned}$$

In other words, the energy gained by the Peierls distorsion is exponentially small in the \(\mu \) parameter. The first inequality states that in the thermodynamic limit at null temperature, the minimizers are always dimerized, as first proved by Kennedy and Lieb [5].

Proof

Let us first compute \(W_1\), the optimizer of \(g_0(W, 0)\). This is simply the minimum of

$$\begin{aligned} g_0(W,0) = \frac{\mu }{2} (W - 1)^2 - \frac{4}{\pi }\int _0^{\pi /2}\sqrt{W^2\sin ^2(s)} {\textrm{d}}s = \frac{\mu }{2}\mu (W - 1)^2 - \frac{4}{\pi }W. \end{aligned}$$

The minimizer satisfies \(\mu (W_1 - 1) = \frac{4}{\pi }\), hence \(W_1 = 1 + \frac{4}{\pi \mu }\). In particular,

$$\begin{aligned} f_{0, \textrm{per}} = -\frac{4}{\pi } - \frac{8}{\pi ^2\mu }. \end{aligned}$$

We now compute the energy gain from the breaking of periodicity. For \((W, \delta )\) a trial pair, we write \(W = W_1 + \varepsilon .\) We assume that \(g_0(W,\delta )< g_0(W_1,0). { \mathrm Then} \)

$$\begin{aligned}&g_0 (W, \delta ) - g_0(W_1, 0)\\&\quad = \frac{\mu }{2}(\varepsilon ^2 + \delta ^2) - \frac{4W_1}{\pi }\int _0^{\pi /2}\left[ \sqrt{ \frac{(W_1 + \varepsilon )^2}{W_1^2} + \frac{\delta ^2}{W_1^2}\cot ^2(s)} - 1 - \frac{\varepsilon }{W_1} \right] \sin (s) {\text {d}}s\\&\quad \ge \frac{\mu }{2}(\varepsilon ^2 + \delta ^2) - \frac{4\delta }{\pi },\;\hbox {so}\;\delta<\frac{8}{\pi \mu }\;\hbox {and}\;|\varepsilon |<\frac{4}{\pi \mu }. \end{aligned}$$

To compute the integral, we make the change of variable \(u=\cos (s),\) and get that the integral equals

$$\begin{aligned} \frac{W_1 + \varepsilon }{W_1}\left( \int _0^1\sqrt{1+ \frac{au^2}{1-u^2}} {\textrm{d}}u -1 \right) , \text{ with } a:= \left( \frac{\delta }{W_1 + \varepsilon }\right) ^2. \end{aligned}$$

Using that

$$\begin{aligned} \int _0^1\sqrt{1+ \frac{au^2}{1-u^2}} {\textrm{d}}u = E(1 - a) = 1 + \left( \frac{-\ln (a)}{4} -\frac{1}{4} + \ln (2) \right) a + O(a^2), \end{aligned}$$

where E is a complete elliptic integral of the second kind, we get

$$\begin{aligned} g_0(W, \delta ) - g_0(W_1, 0)&= \frac{\mu }{2}(\varepsilon ^2 + \delta ^2) - \frac{4\delta ^2}{\pi (W_1 + \varepsilon )} \left[ -\frac{1}{2}\ln \left( \frac{\delta }{W_1 + \varepsilon }\right) -\frac{1}{4} + \ln (2) + O(a)\right] \\&= \frac{1}{2}\mu (\varepsilon ^2 + \delta ^2) - \frac{2}{\pi W_1 }\delta ^2\ln (\delta ^{-1})(1+ o(1)). \end{aligned}$$

We now minimize the right-hand side. For large \(\mu \), we have \(W_1 \approx 1\) and the minimization in \(\varepsilon \) gives \(\varepsilon = 0\). So

$$\begin{aligned} g_0(W, \delta ) - g_0(W_1, 0) \ge \delta ^2\left( \frac{\mu }{2} - \frac{2\ln (\delta ^{-1})}{\pi } (1+o(1))\right) . \end{aligned}$$

We optimize the right-hand side by taking \(\delta = {\textrm{e}}^{-(\frac{\pi }{4}\mu + \frac{1}{2})} \), and this completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontier, D., Kouande, A.E.K. & Séré, É. Phase Transition in the Peierls Model for Polyacetylene. Ann. Henri Poincaré 24, 3945–3966 (2023). https://doi.org/10.1007/s00023-023-01299-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01299-w

Navigation