Skip to main content
Log in

A Remark on the Essential Self-adjointness for Klein–Gordon-Type Operators

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We discuss a new simplified proof of the essential self-adjointness for formally self-adjoint differential operators of real principal type with the null non-trapping condition, previously proved by Vasy (J Spectr Theory 10: 439–461, 2020) and Nakamura-Taira (Ann Henri Lebesgue 4: 1035–1059, 2021). For simplicity, here we discuss the second-order cases, i.e., Klein–Gordon-type operators only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Colin de Verdière, Y., Bihan, C.: On essential-selfadjointness of differential operators on closed manifolds. To appear in Ann. Fac. Sci. Toulouse Math. (2020) arXiv:2004.06937

  2. Dang, N. V., Wrochna, M.: Complex powers of the wave operator and the spectral action on Lorentzian scattering spaces. To appear in Journal of the European Mathematical Society (JEMS) (2020) arXiv:2012.00712

  3. Dang, N. V.: Wrochna, M.: Dynamical residues of Lorentzian spectral zeta functions. To appear in Journal de l’École Polytechnique–Mathématiques (2021) arXiv:2108.07529

  4. Dereziński, J., Siemssen, D.: Feynman propagators on static spacetimes. Rev. Math. Phys. 30, 1850006 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dereziński, J., Siemssen, D.: An evolution equation approach to the Klein–Gordon operator on curved spacetime. Pure Appl. Anal. 1, 215–261 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dereziński, J., Siemssen, D.: An evolution equation approach to linear quantum field theory. (2019) preprint arXiv:1912.10692

  7. Duistermaat, J., Hörmander, L.: Fourier integral operators. II. Acta Math. 128(3–4), 183–269 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gell-Redman, J., Haber, N., Vasy, A.: The Feynman propagator on perturbations of Minkowski space. Commun. Math. Phys. 342, 333–384 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gérard, C., Wrochna, M.: The massive Feynman propagator on asymptotically Minkowski spacetimes. Am. J. Math. 141, 1501–1546 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gérard, C., Wrochna, M.: The massive Feynman propagator on asymptotically Minkowski spacetimes II. Int. Math. Res. Notices. 2020, 6856–6870 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hörmander, L.: Analysis of Linear Partial Differential Operators, I-IV. Springer, Berlin, 1983–1985

  12. Melrose, R.: Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces. Marcel Dekker, 85–130 (1994)

  13. Nakamura, S.: Propagation of the homogeneous wave front set for Schrödinger equations. Duke Math. J. 126, 349–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nakamura, S., Taira, K.: Essential self-adjointness of real principal type operators. Ann. Henri Lebesgue. 4, 1035–1059 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nakamura, S., Taira, K.: Essential self-Adjointness of Klein–Gordon type operators on asymptotically static, Cauchy-compact spacetimes. Tto appear in Commun. Math. Phys, (2022) arXiv:2203.00178

  16. Reed, M., Simon, B.: The Methods of Modern Mathematical Physics, I–IV. Academic Press, 1972–1980

  17. Taira, K.: Equivalence of classical and quantum completeness for real principal type operators on the circle. arXiv:2004.07547

  18. Taira, K.: Limiting absorption principle and equivalence of Feynman propagators on asymptotically Minkowski spacetimes. Commun. Math. Phys. 388, 625–655 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Vasy, A.: Essential self-adjointness of the wave operator and the limiting absorption principle on Lorentzian scattering spaces. J. Spectr. Theory. 10, 439–461 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics 138. American Math. Soc. (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Nakamura.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors thank Jan Dereziński and Michał Wrochna for valuable discussions and encouragement. SN was partly supported by JSPS Kakenhi Grant Number 21K03276. KT was partly supported by JSPS Research Fellowship for Young Scientists, Kakenhi Grant Number 20J00221.

Appendices

Appendix A. Proof of Lemma 2.1

Suppose \(\psi \) satisfies the conditions of Lemma 2.1. At first we note that if \(\varphi \in H^1(\mathbb {R}^n)\) and \(P\varphi \in L^2(\mathbb {R}^n)\), then by the definition of the distributional derivative, we learn

$$\begin{aligned} \langle \varphi , P\varphi \rangle&= \sum _{j,k=1}^n \int g^{jk}(x)\overline{D_j\varphi (x)}D_k\varphi (x)\text {d}x \\&\quad +\textrm{Re}\left( \sum _{j=1}^n \int u_j \overline{\varphi (x)}D_j\varphi (x)\text {d}x\right) +\int u_0|\varphi (x)|^2 \text {d}x \in \mathbb {R}. \end{aligned}$$

We choose a smooth function \(\chi \in C_0^{\infty }(\mathbb {R}^n;[0,1])\) such that \(\chi (x)=1\) for \(|x|\le 1\). We set \(X_R\varphi (x)=\chi (x/R)\varphi (x)\) for \(R>0\) and \(\varphi \in L^2(\mathbb {R}^n)\).

Let \(\psi \in L^2(\mathbb {R}^n)\cap H^{1,-1}(\mathbb {R}^n)\) such that \((P-z)\psi =0\). Now we apply the above formula to \(\varphi =X_R\psi \). Then \(X_R\psi \in H^1(\mathbb {R}^n)\) and \(P(X_R\psi )\in L^2(\mathbb {R}^n)\) for each \(R>0\), and hence we learn

$$\begin{aligned} \textrm{Im}\langle X_R\psi ,(P-z)X_R\psi \rangle = -\textrm{Im}\, z\Vert X_R\psi \Vert ^2. \end{aligned}$$

On the other hand, we have

$$\begin{aligned} \langle X_R\psi ,(P-z)X_R\psi \rangle&=\langle X_R\psi , X_R(P-z)\psi \rangle +\langle X_R\psi ,[P,X_R]\psi \rangle \\&=\langle X_R\psi ,[P,X_R]\psi \rangle . \end{aligned}$$

It is easy to observe that \([P,X_R]\) is a first-order differential operator with the coefficients uniformly bounded by \(C\langle x \rangle ^{-1}\), and converges to 0 pointwise as \(R\rightarrow \infty \). Thus \([P,X_R]\psi \) is bounded by an \(L^2\) function, and then by the dominated convergence theorem, we have \(\langle X_R\psi ,[P,X_R]\psi \rangle \rightarrow 0\) as \(R\rightarrow \infty \). Now we conclude

$$\begin{aligned} -\textrm{Im}\, z\Vert \psi \Vert ^2 =\lim _{R\rightarrow \infty }\bigl (-\textrm{Im}\, z\Vert X_R\psi \Vert ^2\bigr ) =\lim _{R\rightarrow \infty }\langle X_R\psi ,[P,X_R]\psi \rangle =0, \end{aligned}$$

and thus \(\psi =0\). \(\square \)

Appendix B. Proof of the Basic Commutator Estimate

In this appendix, we prove a basic inequality used in Sect. 2.3. More precisely, we show

$$\begin{aligned} i[B^*B, P] \ge \frac{c}{h}B^* \langle x \rangle ^{-1} B -\tilde{B}^* \langle x \rangle ^{-1}\tilde{B} -E^*E, \end{aligned}$$
(B.1)

implies

$$\begin{aligned}&\frac{c}{2h}\bigl \Vert \langle x \rangle ^{-1/2}B\varphi \bigr \Vert ^2 +2(\textrm{Im}z)\Vert B\varphi \Vert ^2\nonumber \\&\qquad \le \frac{2h}{c}\bigl \Vert \langle x \rangle ^{1/2}B(P-z)\varphi \bigr \Vert ^2 +\Vert \langle x \rangle ^{-1/2}\tilde{B}\varphi \Vert ^2 +\Vert E\varphi \Vert ^2, \end{aligned}$$
(B.2)

where \(\Vert \cdot \Vert =\Vert \cdot \Vert _{L^2(\mathbb {R}^n)}\).

At first, we prove (B.2) for \(\varphi \in \mathcal {S}(\mathbb {R}^n)\). If \(\varphi \in \mathcal {S}(\mathbb {R}^n)\), we have

$$\begin{aligned} i\langle \varphi ,[B^*B,P]\varphi \rangle&= i\langle \varphi , (B^*B P-PB^*B)\varphi \rangle \\&= i(\langle B\varphi ,B(P-z)\varphi \rangle -\langle B(P-\bar{z})\varphi ,B\varphi \rangle )\\&= -2\textrm{Im}(\langle B\varphi ,B(P-z)\varphi \rangle ) -2(\textrm{Im}z)\Vert B\varphi \Vert ^2\\&\le 2\Vert \langle x \rangle ^{-1/2} B\varphi \Vert \,\Vert \langle x \rangle ^{1/2} B(P-z)\varphi \Vert -2(\textrm{Im}z)\Vert B\varphi \Vert ^2. \end{aligned}$$

On the other hand, we have

$$\begin{aligned}&\frac{c}{h}\langle \varphi ,B\langle x \rangle ^{-1}B\varphi \rangle -\langle \varphi ,\tilde{B}^*\langle x \rangle ^{-1}\tilde{B}\varphi \rangle -\langle \varphi ,E^*E\varphi \rangle \\&\qquad = \frac{c}{h}\Vert \langle x \rangle ^{-1/2}B\varphi \Vert ^2-\Vert \langle x \rangle ^{-1/2}\tilde{B}\varphi \Vert ^2-\Vert E\varphi \Vert ^2. \end{aligned}$$

Combining them with our assumption (B.1), we learn

$$\begin{aligned}&\frac{c}{h}\Vert \langle x \rangle ^{-1/2}B\varphi \Vert ^2+2(\textrm{Im}z)\Vert B\varphi \Vert ^2\\&\qquad \le 2\Vert \langle x \rangle ^{-1/2} B\varphi \Vert \,\Vert \langle x \rangle ^{1/2} B(P-z)\varphi \Vert +\Vert \langle x \rangle ^{-1/2}\tilde{B}\varphi \Vert ^2 +\Vert E\varphi \Vert ^2. \end{aligned}$$

Now we use the elementary bound:

$$\begin{aligned} \Vert \langle x \rangle ^{-1/2} B\varphi \Vert \,\Vert \langle x \rangle ^{1/2} B(P-z)\varphi \Vert \le \frac{c}{4h}\Vert \langle x \rangle ^{-1/2} B\varphi \Vert ^2+ \frac{h}{c}\Vert \langle x \rangle ^{1/2} B(P-z)\varphi \Vert ^2 \end{aligned}$$

in the right-hand side, and we obtain (B.2) for \(\varphi \in \mathcal {S}(\mathbb {R}^n)\).

In applications, we use (B.2) for \(\varphi \in L^2(\mathbb {R}^n)\) such that \((P-z)\varphi \in H^{0,1/2+\gamma }\), and we need to show the inequality extends to such functions. Since \(B, \tilde{B}, E\in \bigcap _{m\in \mathbb {R}}\textrm{Op}S^{m,\gamma }\), it is easy to observe that (B.2) is extended to \(\varphi \in \bigcap _{\ell \in \mathbb {R}} H^{0,\ell }\).

Now let A be one of the operators \(\langle x \rangle ^{-1/2}B\), B, \(\langle x \rangle ^{1/2}B(P-z)\), \(\langle x \rangle ^{-1/2}\tilde{B}\) and E. Let \(X_R\) be the operator used in the last Appendix. Then \([A,X_R]\) is a pseudodifferential operator with the symbol which is bounded in \(S^{0,-1/2+\gamma }\) and supported in \(\textrm{supp}[\nabla X_R]\subset \{|x|\ge R\}\). These imply

$$\begin{aligned} \Vert [A,X_R] \Vert _{L^2\rightarrow L^2}\le CR^{-1/2+\gamma }\rightarrow 0, \quad \text {as }R\rightarrow \infty \end{aligned}$$

by the \(L^2\)-boundedness theorem for pseudodifferential operators. Using this, and since \(X_R\varphi \in \bigcap _{\ell \in \mathbb {R}} H^{0,\ell }(\mathbb {R}^n)\) if \(\varphi \in L^2(\mathbb {R}^n)\), we have

$$\begin{aligned}&\frac{c}{2h}\bigl \Vert \langle x \rangle ^{-1/2}B\varphi \bigr \Vert ^2 +2(\textrm{Im}z)\Vert B\varphi \Vert ^2 \\&\qquad =\lim _{R\rightarrow \infty }\biggl (\frac{c}{2h}\bigl \Vert X_R\langle x \rangle ^{-1/2}B\varphi \bigr \Vert ^2 +2(\textrm{Im}z) \Vert X_R B\varphi \Vert ^2\biggr ) \\&\qquad \le \lim _{R\rightarrow \infty }\biggl (\frac{2h}{c}\bigl \Vert X_R\langle x \rangle ^{1/2}B(P-z)\varphi \bigr \Vert ^2 +\Vert X_R\langle x \rangle ^{-1/2}\tilde{B}\varphi \Vert ^2 +\Vert X_RE\varphi \Vert ^2\biggr )\\&\qquad = \frac{2h}{c}\bigl \Vert \langle x \rangle ^{1/2}B(P-z)\varphi \bigr \Vert ^2 +\Vert \langle x \rangle ^{-1/2}\tilde{B}\varphi \Vert ^2 +\Vert E\varphi \Vert ^2, \end{aligned}$$

provided \(\varphi \in L^2(\mathbb {R}^n)\) and \((P-z)\varphi \in H^{0,1/2+\gamma }\). \(\square \)

Appendix C. Proof of Lemmas 3.1 and 5.1

Proof of Lemma 3.1

It suffices to prove that for each \(j=2,3\),

$$\begin{aligned} \{p_2,\zeta _1(x/R,\xi )\} \le 0,\quad \{p_2,\zeta _j(x,\xi )\}\le 0 \end{aligned}$$

on \(\textrm{supp}[\zeta _1(\cdot /R,\cdot )\zeta _2\zeta _3]\) for sufficiently large R.

Throughout this proof, we denote \(\delta =\sigma -\sigma '>0\) for simplicity. At first, we consider the estimate for \(\zeta _1(x/R,\xi )\). We note

$$\begin{aligned} \textrm{supp}[\zeta _1]\subset \bigl \{(x,\xi )\bigm |x_\xi ^\parallel \le -1+\tfrac{1}{2}|x_\xi ^\perp |^2\bigr \} \subset \bigl \{(x,\xi )\bigm ||x|\ge 1\bigr \}, \end{aligned}$$

and

$$\begin{aligned} \textrm{supp}[\partial _{(x,\xi )}\zeta _1]\subset \bigl \{(x,\xi )\bigm |-2+\tfrac{1}{2}|x_\xi ^\perp |^2 \le x_\xi ^\parallel \le -1+\tfrac{1}{2}|x_\xi ^\perp |^2\bigr \}. \end{aligned}$$

Moreover,

$$\begin{aligned} \hat{v}(\xi )\cdot \partial _x \zeta _1(x,\xi ) ={\chi }_1'\bigl (x_\xi ^\parallel -\tfrac{1}{2} |x^\perp _\xi |^2+1\bigr )\le 0. \end{aligned}$$

Since \(\partial _\xi p_2=v(\xi )+O(|\xi |\langle x \rangle ^{-\mu })\), we have

$$\begin{aligned} \partial _\xi p_2\cdot \partial _x \zeta _1(x/R,\xi ) = R^{-1} {\chi }_1'\bigl ((x/R)_\xi ^\parallel -\tfrac{1}{2} |(x/R)^\perp _\xi |^2+1\bigr )\cdot \bigl (1+O(R^{-\mu })\bigr )|\xi |. \end{aligned}$$

Similarly, since \(\partial _x p_2=O(|\xi |^2\langle x \rangle ^{-1-\mu })\) and \(\zeta _1(x,\xi )\) is homogeneous in \(\xi \), we learn

$$\begin{aligned} \partial _x p_2\cdot \partial _\xi \zeta _1(x/R,\xi ) = {\chi }_1'\bigl ((x/R)_\xi ^\parallel -\tfrac{1}{2} |(x/R)^\perp _\xi |^2+1\bigr )\cdot O(R^{-1-\mu })|\xi |. \end{aligned}$$

These imply

$$\begin{aligned} \{p_2,\zeta _1(x/R,\xi )\} = R^{-1}{\chi }_1'\bigl ((x/R)_\xi ^\parallel -\tfrac{1}{2} |(x/R)^\perp _\xi |^2+1\bigr )\cdot \bigl (1+O(R^{-\mu })\bigr )|\xi | \le 0 \end{aligned}$$

on \(\textrm{supp}[\zeta _1(x/R,\xi )\zeta _2(x,\xi )\zeta _3(x,\xi )]\) for sufficiently large R.

Next, we deal with the estimate for \(\zeta _2\). We recall \(\zeta _2\) is homogenous in \((x,\xi )\), and we note

$$\begin{aligned} \partial _x\zeta _2(x,\xi )&= (\partial _x\beta (x,\xi )) {\chi }_1'((\beta (x,\xi )-\sigma )/\delta ))/\delta \\&=|x|^{-1}(\hat{v}(\xi )-\hat{x} \beta (x,\xi ))\cdot {\chi }_1'((\beta (x,\xi )-\sigma )/\delta )/\delta , \end{aligned}$$

and in particular

$$\begin{aligned} \hat{v}(\xi )\cdot \partial _x\zeta _2(x,\xi )&=|x|^{-1}(1-\beta (x,\xi )^2) {\chi }_1'((\beta (x,\xi )-\sigma )/\delta )/\delta \\&\le \delta ^{-1}|x|^{-1} (1-\sigma ^2){\chi }_1'((\beta (x,\xi )-\sigma )/\delta ) \le 0. \end{aligned}$$

Similarly to the argument for \(\zeta _1\), if \(|x|\ge R\) then we have

$$\begin{aligned} \partial _\xi p_2\cdot \partial _x \zeta _2 =\delta ^{-1}|x|^{-1} (1-\sigma ^2){\chi }_1'((\beta (x,\xi )-\sigma )/\delta ) \cdot (1+O(R^{-\mu }))|\xi | \end{aligned}$$

and

$$\begin{aligned} \partial _x p_2\cdot \partial _\xi \zeta _2(x,\xi )= {\chi }_1'((\beta (x,\xi )-\sigma )/\delta )\cdot O(|x|^{-1-\mu }|\xi |). \end{aligned}$$

Combining these, we have

$$\begin{aligned} \{p_2,\zeta _2\} =\delta ^{-1}|x|^{-1} (1-\sigma ^2){\chi }_1'((\beta (x,\xi )-\sigma )/\delta ) \cdot (1+O(R^{-\mu }))|\xi |\le 0 \end{aligned}$$

on \(\textrm{supp}[\zeta _1(x/R,\xi )\zeta _2(x,\xi )\zeta _3(x,\xi )]\).

Finally, we consider the estimate for \(\zeta _3\). We now note \(\tau (x,\xi )\) is the length of the line segment \(\bigl \{x+t\hat{v}(\xi )\bigm |t\ge 0\bigr \}\) inside \(\bigl \{(x,\xi )\bigm |\beta (x,\xi )\le \sigma _\infty \bigr \}\). We recall

$$\begin{aligned} \tau (x,\xi )=c_0\sqrt{|x|^2-(x\cdot \hat{v}(\xi ))^2}-x\cdot \hat{v}(\xi ) =c_0 |x_\xi ^\perp | -x\cdot \hat{v}(\xi ), \end{aligned}$$

and hence

$$\begin{aligned} \partial _x \tau (x,\xi )= c_0\, \widehat{x_\xi ^\perp } -\hat{v}(\xi ), \end{aligned}$$

and in particular,

$$\begin{aligned} -v(\xi )\cdot \partial _x \tau (x,\xi )=|v(\xi )|. \end{aligned}$$
(C.1)

We also note

$$\begin{aligned} c_1|x|\le \tau (x,\xi )\le C_1|x| \quad \text {for }(x,\xi )\in \textrm{supp}[\zeta _2] \end{aligned}$$

with some \(0<c_1<C_1\). We also note

$$\begin{aligned} \partial _\xi \zeta _3(x,\xi ) = {\chi }_2'\bigl (\tfrac{|\xi |^2-1}{\lambda (x,\xi )}\bigr ) \biggl (\frac{2\xi }{\lambda (x,\xi )} -(|\xi |^2-1)\frac{\partial _\xi \lambda (x,\xi )}{\lambda (x,\xi )^2}\biggr ) \end{aligned}$$

where \((\cdots )\) is smooth and uniformly bounded on the support of \({\chi }_2'(\cdots )\). On the other hand,

$$\begin{aligned} \partial _x \zeta _3(x,\xi )&= -{\chi }_2'\bigl (\tfrac{|\xi |^2-1}{\lambda (x,\xi )}\bigr )(|\xi |^2-1) \frac{\partial _x\lambda (x,\xi )}{\lambda (x,\xi )^2}\\&=-{\chi }_2'\bigl (\tfrac{|\xi |^2-1}{\lambda (x,\xi )}\bigr )\frac{|\xi |^2-1}{\lambda (x,\xi )^2}\frac{\nu \delta _0\tau (x,\xi )\partial _x\tau (x,\xi )}{\langle \tau (x,\xi ) \rangle ^{2+\nu }}, \end{aligned}$$

and in particular, by (C.1), we have

$$\begin{aligned} v(\xi )\cdot \partial _x \zeta _3(x,\xi ) = {\chi }_2'\bigl (\tfrac{|\xi |^2-1}{\lambda (x,\xi )}\bigr )\frac{|\xi |^2-1}{\lambda (x,\xi )^2}\frac{\nu \delta _0\tau (x,\xi )|v(\xi )|}{\langle \tau (x,\xi ) \rangle ^{2+\nu }}. \end{aligned}$$

This also implies

$$\begin{aligned} \partial _\xi p_2(x,\xi )\cdot \partial _x\zeta _3(x,\xi )= {\chi }_2'\bigl (\tfrac{|\xi |^2-1}{\lambda (x,\xi )}\bigr )\frac{|\xi |^2-1}{\lambda (x,\xi )^2}\frac{\nu \delta _0\tau (x,\xi )|v(\xi )|}{\langle \tau (x,\xi ) \rangle ^{2+\nu }}(1+O(\langle x \rangle ^{-\mu })). \end{aligned}$$

Noting \({\chi }'_2(t)t\le 0\) for \(t\in \mathbb {R}\) and \(|t|\ge 1\) on \(\textrm{supp}[{\chi }_2'(t)]\), we learn that

$$\begin{aligned} \partial _\xi p_2(x,\xi )\cdot \partial _x\zeta _3(x,\xi ) \le - c_2 \bigl | {\chi }_2'\bigl (\tfrac{|\xi |^2-1}{\lambda (x,\xi )}\bigr ) \bigr |\langle x \rangle ^{-1-\nu } \end{aligned}$$

with some \(c_2>0\) on \(\textrm{supp}[\zeta _2]\). On the other hand, using \(\partial _x p_2(x,\xi )=O(|\xi |^2\)\(\langle x \rangle ^{-1-\mu })\) again, we have

$$\begin{aligned} \partial _x p_2(x,\xi )\cdot \partial _\xi \zeta _3(x,\xi )= {\chi }_2'\bigl (\tfrac{|\xi |^2-1}{\lambda (x,\xi )}\bigr )\times O(|\xi |^3\langle x \rangle ^{-1-\mu }). \end{aligned}$$

Since \(|\xi |\) is bounded on \(\textrm{supp}\zeta _3\), these imply

$$\begin{aligned} \{p_2,\zeta _3\} \le -c_2\bigl | {\chi }_2'\bigl (\tfrac{|\xi |^2-1}{\lambda (x,\xi )}\bigr ) \bigr |(\langle x \rangle ^{-1-\nu }-C\langle x \rangle ^{-1-\mu })\le 0 \end{aligned}$$

on \(\textrm{supp}[\zeta _1(x/R,\xi )\zeta _2(x,\xi )\zeta _3(x,\xi )]\) with sufficiently large R. \(\square \)

Proof of Lemma 5.1

At first, we note if we set

$$\begin{aligned} \rho (x,\xi )=\{p_2,\tilde{\zeta }_1(x,\xi )\tilde{\zeta }_2(x,\xi )\}, \end{aligned}$$

then \(\rho \) satisfies the properties of the lemma, and it suffices to show \(\{p_2,\tilde{\zeta }_3\}\) is non-positive on the support to prove inequality (5.2). The computation is almost identical to the one in the proof of Lemma 3.1 above, but we remark necessary changes. Even though the definition of \(\lambda _+(x,\xi )\) is different from \(\lambda (x,\xi )\), we have the same derivative formula:

$$\begin{aligned} \partial _x\lambda _+(x,\xi ) =-\nu \delta _0\frac{\tau (x,\xi )\partial _x\tau (x,\xi )}{\langle \tau (x,\xi ) \rangle ^{\nu +2}}, \end{aligned}$$

and we have the same bound eventually:

$$\begin{aligned} \partial _\xi p_2(x,\xi )\cdot \partial _x\tilde{\zeta }_3(x,\xi ) \le - c_2 \bigl | {\chi }_2'\bigl (\tfrac{|\xi |^2-1}{\lambda (x,\xi )}\bigr ) \bigr |\langle x \rangle ^{-1-\nu }. \end{aligned}$$

The rest of the computation is carried out without changes to conclude \(\tilde{\zeta }_1\tilde{\zeta }_2\{p_2,\)\(\tilde{\zeta }_3\}\le 0\) with sufficiently large R. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, S., Taira, K. A Remark on the Essential Self-adjointness for Klein–Gordon-Type Operators. Ann. Henri Poincaré 24, 2587–2605 (2023). https://doi.org/10.1007/s00023-023-01277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01277-2

Navigation