Skip to main content
Log in

Pointwise Weyl Law for Graphs from Quantized Interval Maps

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We prove an analogue of the pointwise Weyl law for families of unitary matrices obtained from quantization of one-dimensional interval maps. This quantization for interval maps was introduced by Pakoński et al. (J Phys A 34:9303–9317, 2001) as a model for quantum chaos on graphs. Since we allow shrinking spectral windows in the pointwise Weyl law, as a consequence we obtain for these models a strengthening of the quantum ergodic theorem from Berkolaiko et al. (Commun Math Phys 273:137–159, 2007), and show in the semiclassical limit that a family of randomly perturbed quantizations has approximately Gaussian eigenvectors. We also examine further the specific case where the interval map is the doubling map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This is the growth condition for every \(\varepsilon >0\), there is \(A_\varepsilon \) so that \(|f(z)|\le A_\varepsilon e^{(2\pi +\varepsilon )|z|}\) for all \(z\in \mathbb {C}\).

References

  1. Anantharaman, N.: Quantum ergodicity on regular graphs. Commun. Math. Phys. 353, 633–690 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Anantharaman, N.: Delocalization of Schrödinger eigenfunctions. In: Proceedings ICM 2018, vol. 1, World Scientific Publishing, pp. 341–375 (2018)

  3. Anantharaman, N., Ingremeau, M., Sabri, M., Winn, B.: Quantum ergodicity for expanding quantum graphs in the regime of spectral delocalization. J. Math. Pures Appl. (9) 151, 28–98 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Anantharaman, N., Le Masson, E.: Quantum ergodicity on large regular graphs. Duke Math. J. 164, 723–765 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Anantharaman, N., Sabri, M.: Quantum ergodicity on graphs: from spectral to spatial delocalization. Ann. Math. 189, 753–835 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Berkolaiko, G., Keating, J.P., Smilansky, U.: Quantum ergodicity for graphs related to interval maps. Commun. Math. Phys. 273, 137–159 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs, Mathematical Surveys and Monographs. American Mathematical Society (2010)

  8. Berkolaiko, G., Schanz, H., Whitney, R.: Leading off-diagonal correction to the form factor of large graphs. Phys. Rev. Lett. 82, 104101 (2002)

    ADS  Google Scholar 

  9. Berkolaiko, G., Schanz, H., Whitney, R.: Form factor for a family of quantum graphs: an expansion to third order. J. Phys. A 36, 8373–8392 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Berry, M.V.: Regular and irregular semiclassical wavefunctions. J. Phys. A 10, 2083–2091 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Bohigas, O., Giannoni, M.J., Schmidt, C.: Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1–4 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press (2013)

  13. Bouzouina, A., De Biévre, S.: Equipartition of the eigenfunctions of quantized ergodic maps on the torus. Commun. Math. Phys. 178, 83–105 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Canzani, Y., Galkowski, J.: Weyl remainders: an application of geodesic beams (2020). Preprint arXiv:2010.03969

  15. Chatterjee, S., Galkowski, J.: Arbitrarily small perturbations of Dirichlet Laplacians are quantum unique ergodic. J. Spectr. Theory 8, 909–947 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Chatterjee, S., Meckes, E.: Multivariate normal approximation using exchangeable pairs. ALEA 4, 257–283 (2008)

    MathSciNet  MATH  Google Scholar 

  17. de Verdière, Y.C.: Ergodicité et fonctions propres du laplacien. Commun. Math. Phys. 102, 497–502 (1985)

    ADS  MATH  Google Scholar 

  18. Diaconis, P., Freedman, D.: Asymptotics of graphical projection pursuit. Ann. Stat. 12, 793–815 (1984)

    MathSciNet  MATH  Google Scholar 

  19. Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29, 39–79 (1975)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Gnutzmann, S., Altland, A.: Universal spectral statistics in quantum graphs. Phys. Rev. Lett. 93, 194101 (2004)

    ADS  Google Scholar 

  21. Gnutzmann, S., Altland, A.: Spectral correlations of individual quantum graphs. Phys. Rev. E 72, 056215 (2005)

    ADS  MathSciNet  Google Scholar 

  22. Gnutzmann, S., Keating, J., Piotet, F.: Eigenfunction statistics on quantum graphs. Ann. Phys. 325, 2595–2640 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Gnutzmann, S., Keating, J.P., Piotet, F.: Quantum ergodicity on graphs. Phys. Rev. Lett. 101, 264102 (2008)

    ADS  Google Scholar 

  24. Gutkin, B., Osipov, V.A.: Clustering of periodic orbits in chaotic systems. Nonlinearity 26, 177–200 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Harrison, J., Hudgins, T.: Complete dynamical evaluation of the characteristic polynomial of binary quantum graphs (2020). Preprint arXiv:2011.05213

  26. Huber, P.: Projection pursuit. Ann. Stat. 13, 435–525 (1985)

    MathSciNet  MATH  Google Scholar 

  27. Ivriĭ, V.: The second term of the spectral asymptotics for a Laplace Beltrami operator on manifolds with boundary. Funktsional. Anal. i Prilozhen. 14, 25–34 (1980)

    MathSciNet  Google Scholar 

  28. Kottos, T., Smilansky, U.: Quantum chaos on graphs. Phys. Rev. Lett. 79, 4794–4797 (1997)

    ADS  Google Scholar 

  29. Kottos, T., Smilansky, U.: Periodic orbit theory and spectral statistics for quantum graphs. Ann. Phys. 274, 76–124 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Kurlberg, P., Rudnick, Z.: Hecke theory and distribution for the quantization of linear maps of the torus. Duke Math. J. 103, 47–77 (2000)

    MathSciNet  MATH  Google Scholar 

  31. Kurlberg, P., Rudnick, Z.: On quantum ergodicity for linear maps of the torus. Commun. Math. Phys. 222, 201–227 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Leroux, P.: Coassociative grammar, periodic orbits, and quantum random walk over z. Int. J. Math. Math. Sci 24, 3979–3996 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Mañé, R.: Ergodic Theory and Differentiable Dynamics, vol. 8 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer-Verlag, Berlin (1987). Translated from the Portuguese by Silvio Levy

  34. Maples, K.: Quantum unique ergodicity for random bases of spectral projections. Math. Res. Lett. 20, 1115–1124 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Marklof, J., O’Keefe, S.: Weyl’s law and quantum ergodicity for maps with divided phase space. Nonlinearity 18, 277–304 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Meckes, E.: Quantitative asymptotics of graphical projection pursuit. Electron. Commun. Probab. 14, 176–185 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Montgomery, H.L.: Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, vol. 84 of CBMS Regional Conference Series in Mathematics, American Mathematical Society (1994)

  38. Pakoński, P., Życzkowski, K., Kuś, M.: Classical 1D maps, quantum graphs and ensembles of unitary matrices. J. Phys. A 34, 9303–9317 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Rudelson, M., Vershynin, R.: Hanson-Wright inequality and sub-Gaussian concentration. Electron. Commun. Probab. 18, 9 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Rudnick, Z., Sarnak, P.: The behaviour of eigenstates of arithmetic hyperbolic manifolds. Commun. Math. Phys. 161, 195–213 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Safarov, Y.G.: Asymptotics of the spectral function of a positive elliptic operator without a nontrapping condition, (Russian), Funktsional. Anal. i Prilozhen, 22, pp. 53–65 (1988). Translation in Funct. Anal. Appl. 22, 213-223 (1989)

  42. Selberg, A.: Alte Selberg Collected Papers, vol. II. Springer-Verlag (1991)

  43. Shnirelman, A.: Ergodic properties of eigenfunctions. Uspehi Mat. Nauk 29, 181–182 (1974)

    MathSciNet  Google Scholar 

  44. Sogge, C.D., Zelditch, S.: Riemannian manifolds with maximal eigenfunction growth. Duke Math. J. 114, 387–437 (2002)

    MathSciNet  MATH  Google Scholar 

  45. Tanner, G.: Spectral statistics for unitary transfer matrices of binary graphs. J. Phys. A 33, 3567–3585 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Tanner, G.: Unitary-stochastic matrix ensembles and spectral statistics. J. Phys. A 34, 8485–8500 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Vaaler, J.D.: Some extremal functions in Fourier analysis. Bull. Amer. Math. Soc. 12, 183–216 (1985)

    MathSciNet  MATH  Google Scholar 

  48. VanderKam, J.M.: \({L}^\infty \) norms and quantum ergodicity on the sphere. Int. Math. Res 7, 329–347 (1997)

    MathSciNet  MATH  Google Scholar 

  49. Zelditch, S.: Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J. 55, 919–941 (1987)

    MathSciNet  MATH  Google Scholar 

  50. Zelditch, S.: Index and dynamics of quantized contact transformations. Ann. Inst. Fourier (Grenoble) 47, 305–363 (1997)

    MathSciNet  MATH  Google Scholar 

  51. Zelditch, S.: Quantum ergodicity of random orthonormal bases of spaces of high dimension. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372, 20120511 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Zworski, M.: Semiclassical Analysis, vol. 138 of Graduate Studies in Mathematics, American Mathematical Society (2012)

  53. Życzkowski, K., Słomczński, W., Kuś, M., Sommers, H.J.: Random unistochastic matrices. J. Phys. A 36, 3425–3450 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Ramon van Handel for suggesting this problem and providing many helpful discussions and feedback, and for pointing out the simpler proof of Proposition 8.1. The author would also like to thank Peter Sarnak for helpful discussion and suggesting the use of the Beurling–Selberg function as the particular smooth approximation. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-2039656. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Shou.

Additional information

Communicated by David Damanik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Details for Sect. 6

Appendix A. Details for Sect. 6

In this section we provide details concerning Theorem 6.1. The following theorem from [36], also using [16], is a quantitative version of the theorem from [18]. Theorem 6.1 will follow from this theorem applied to our case with complex projections.

Theorem A.1

(Complex version of Theorem 2 in [36]). Let \(\{x_j\}_{j=1}^n\) be deterministic vectors in \(\mathbb {C}^d\), normalized so that \(\sigma ^2=\frac{1}{nd}\sum _{i=1}^n\Vert x_i\Vert ^2=1\) and suppose

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^n\left| \Vert x_i\Vert ^2-d\right|&\le A \end{aligned}$$
(A.1)
$$\begin{aligned} \sup _{\theta \in \mathbb {S}_\mathbb {C}^{d-1}}\frac{1}{n}\sum _{i=1}^n|\langle \theta ,x_i\rangle |^2&\le B. \end{aligned}$$
(A.2)

For a point \(\theta \in \mathbb {S}_\mathbb {C}^{d-1}\subset \mathbb {C}^d\), define the measure \(\mu ^{(n)}_\theta :=\frac{1}{n}\sum _{j=1}^n\delta _{\langle \theta ,x_j\rangle }\) on \(\mathbb {C}\). There are absolute numerical constants \(C,c>0\) so that for \(\theta \sim {\text {Unif}}(\mathbb {S}_{\mathbb {C}^{d-1}})\), any bounded L-Lipschitz \(f:\mathbb {C}\rightarrow \mathbb {C}\), and \(\varepsilon >\frac{2L(A+3)}{d-1}\), there is the quantitative bound

$$\begin{aligned} \mathbb {P}\left[ \left| \int f(x)\,\textrm{d}\mu ^{(n)}_\theta (x)-\mathbb {E}f( Z)\right| >\varepsilon \right] \le C\exp \Big (-\frac{c\varepsilon ^2d}{L^2B}\Big ), \end{aligned}$$
(A.3)

where \(Z\sim N_\mathbb {C}(0,1)\). In particular, if \(d=d(n)\rightarrow \infty \) as \(n\rightarrow \infty \), and \(A=o(d)\) and \(B=o(d)\), then \(\mu ^{(n)}\) converges weakly in probability to \(N_\mathbb {C}(0,1)\) as \(n\rightarrow \infty \).

Proof outline of Theorem A.1

The proof is the same as the real version in [36], except that the (multi-dimensional) Theorem A.2 written below from [16] replaces the single-variable version. The proof idea from [36] is to let \(F(\theta ):=\frac{1}{n}\sum _{i=1}^nf(\langle \theta ,x_i\rangle )\) and write

$$\begin{aligned} \mathbb {P}\left[ \left| F(\theta )-\mathbb {E}f( Z)\right|>\varepsilon \right]&\le \mathbb {P}\left[ \left| F(\theta )-\mathbb {E}F(\theta )\right| >\varepsilon -|\mathbb {E}F(\theta )-\mathbb {E}f(Z)|\right] . \end{aligned}$$

Then one uses Theorem A.2, a generalization of Stein’s method of exchangeable pairs for abstract normal approximation, to bound \(|\mathbb {E}F(\theta )-\mathbb {E}f(Z)|\) with \(W=\langle \theta ,x_I\rangle \) where \(I\sim {\text {Unif}}\llbracket n\rrbracket \), and then one can apply Gaussian concentration (Lemma A.3, see for example [12, §5.4]) to F which is \((L\sqrt{B})\)-Lipschitz. \(\square \)

In the following, \(\mathcal {L}(X)\) will denote the law of a random variable or vector X.

Theorem A.2

(Theorem 2.5 for \(\mathbb {C}\) in [16]). Let W be a \(\mathbb {C}\)-valued random variable and for each \(\varepsilon >0\) let \(W_\varepsilon \) be a random variable such that \(\mathcal {L}(W)=\mathcal {L}(W_\varepsilon )\), with the property that \(\lim _{\varepsilon \rightarrow 0}W_\varepsilon =W\) almost surely. Suppose there is a function \(\lambda (\varepsilon )\) and complex random variables \(\Gamma ,\Lambda \) such that as \(\varepsilon \rightarrow 0\),

  1. (i)

    \(\frac{1}{\lambda (\varepsilon )}\mathbb {E}[(W_\varepsilon -W)|W]\xrightarrow {L^1}-W\).

  2. (ii)

    \(\frac{1}{2\lambda (\varepsilon )}\mathbb {E}[(W_\varepsilon -W|^2|W]\xrightarrow {L^1}1+\mathbb {E}[\Gamma |W]\).

  3. (iii)

    \(\frac{1}{2\lambda (\varepsilon )}\mathbb {E}[(W_\varepsilon -W)^2|W]\xrightarrow {L^1}\mathbb {E}[\Lambda |W]\).

  4. (iv)

    \(\frac{1}{\lambda (\varepsilon )}\mathbb {E}|W_\varepsilon -W|^3\rightarrow 0\).

Then letting \(Z\sim N_\mathbb {C}(0,1)\),

$$\begin{aligned} d_\textrm{Wass}(W,Z)\le \mathbb {E}|\Gamma |+\mathbb {E}|\Lambda |, \end{aligned}$$
(A.4)

where \(d_\textrm{Wass}\) is the Wasserstein distance \(d_\textrm{Wass}(W,Z)=\sup _{\Vert g\Vert _\textrm{Lip}\le 1}|\mathbb {E}g(W)-\mathbb {E}g(Z)|\).

Lemma A.3

(Gaussian concentration on the complex sphere). Let \(F:\mathbb {C}^d\rightarrow \mathbb {C}\) be L-Lipschitz and \(\theta \sim {\text {Unif}}(\mathbb {S}_\mathbb {C}^{d-1})\). Then there are absolute constants \(C,c>0\) so that

$$\begin{aligned} \mathbb {P}[|F(\theta )-\mathbb {E}F(\theta )|\ge t]\le C\exp (-ct^2d/L^2). \end{aligned}$$
(A.5)

1.1 A.1. Proof of Theorem 6.1

Let \(v_1,\ldots ,v_d\) be an orthonormal basis for \(V^{(\nu )}\), and let \(M_V\) be the \(n\times d\) matrix with those vectors as columns. Apply Theorem A.1 to the data set \(\sqrt{n}M_V^*e_1,\sqrt{n}M_V^*e_2, \ldots ,\sqrt{n}M_V^*e_n\) in \(\mathbb {C}^d\), noting that since \(P^{(\nu )}=M_VM_V^*\), then

$$\begin{aligned} \sigma ^2=\frac{1}{nd}\sum _{x=1}^nn\Vert M_V^*e_x\Vert _2^2=\frac{1}{d}\sum _{x=1}^N\langle e_x|P^{(\nu )}|e_x\rangle =\frac{1}{d}{\text {tr}}P^{(\nu )}=1. \end{aligned}$$

We can also take \(B=1\) since for any \(\theta \in \mathbb {S}_\mathbb {C}^{d-1}\),

$$\begin{aligned} \frac{1}{n}\sum _{x=1}^n|\langle \theta ,\sqrt{n}M_V^*e_x\rangle |^2=\sum _{x=1}^n\langle M_V\theta ,e_x\rangle \langle e_x,M_V\theta \rangle =\Vert M_V\theta \Vert _{\mathbb {C}^n}^2= \Vert \theta \Vert _{\mathbb {C}^d}^2. \end{aligned}$$

If \(\theta \) is uniform on \(\mathbb {S}_\mathbb {C}^{d-1}\subset \mathbb {C}^d\), then \(M_V\theta \) is uniform on \(\mathbb {S}(V^{(\nu )})\), so \(\frac{1}{n}\sum _{j=1}^n\delta _{\langle \theta ,\sqrt{n}M_V^*e_x\rangle }\sim \frac{1}{n}\sum _{j=1}^n\delta _{\sqrt{n}\omega _x}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shou, L. Pointwise Weyl Law for Graphs from Quantized Interval Maps. Ann. Henri Poincaré 24, 2833–2875 (2023). https://doi.org/10.1007/s00023-023-01276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01276-3

Navigation