Skip to main content
Log in

Hydrodynamic Limit of the Kawasaki Dynamics on the 1d-lattice with Strong, Finite-Range Interaction

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We derive the hydrodynamic limit of the Kawasaki dynamics for the one-dimensional conservative system of unbounded real-valued spins with arbitrary strong, quadratic and finite-range interactions. This significantly extends prior results for bounded interaction by Rezakhanlou and complements results obtained by H.T. Yau. The result is obtained by adapting two-scale approach of Grunewald, Otto, Villani and Westdickenberg combined with the authors’ recent approach on conservative systems with strong interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de Probabilités, XIX, 1983/84, volume 1123 of Lecture Notes in Math., pp. 177–206. Springer, Berlin (1985)

  2. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348. Springer, Cham (2014)

    MATH  Google Scholar 

  3. Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math. 20(2), 151–173 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deniz, D., Menz, G., Otto, F., Wu, T.: The quantitative hydrodynamic limit of the Kawasaki dynamics. (2018) arXiv:1807.09850

  5. Dizdar, D., Menz, G., Otto, F., Wu, T.: Toward a quantitative theory of the hydrodynamic limit. (2018) arXiv preprint arXiv:1807.09857

  6. Fathi, M.: A two-scale approach to the hydrodynamic limit part ii: Local Gibbs behavior. Latin Am. J. Prob. Math. Stat. 10, 10 (2012)

    Google Scholar 

  7. Fathi, M., Menz, G.: Hydrodynamic limit for conservative spin systems with super-quadratic, Partially Inhomogeneous Single-Site Potential. (2014) arXiv:1405.3327

  8. Fritz, J.: On the hydrodynamic limit of a one-dimensional Ginzburg–Landau lattice model. The a priori bounds. J. Stat. Phys. 47, 551–572 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Grunewald, N., Otto, F., Villani, C., Westdickenberg, M.G.: A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit. Ann. Inst. H. Poincaré Probab. Statist. 45(2), 302–351 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Guo, M.Z., Papanicolaou, G.C., Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Comm. Math. Phys. 118(1), 31–59 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henderson, C., Menz, G.: Equivalence of a mixing condition and the LSI in spin systems with infinite range interaction. Stochastic Process. Appl. 126(10), 2877–2912 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holley, R., Stroock, D.: Logarithmic Sobolev inequalities and stochastic Ising models. J. Stat. Phys. 46(5–6), 1159–1194 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kipnis, C., Landim, C.: Scaling limits of interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 320. Springer, Berlin (1999)

    MATH  Google Scholar 

  15. Kwon, Y., Lee, J., Menz, G.: Equivalence of the grand canonical ensemble and the canonical ensemble on 1d-lattice systems. (2019) arXiv:1910.07702

  16. Kwon, Y., Menz, G.: Strict convexity of the free energy of the canonical ensemble under decay of correlations. J. Stat. Phys., (2018)

  17. Kwon, Y., Menz, G.: Decay of correlations and uniqueness of the infinite-volume Gibbs measure of the canonical ensemble of 1d-lattice systems. J. Stat. Phys. (2019)

  18. Kwon, Y., Menz, G.: Uniform LSI for the canonical ensemble on the 1d-lattice. ESAIM: PS 24, 341–373 (2020)

    Article  MATH  Google Scholar 

  19. Kosygina, E.: The behavior of the specific entropy in the hydrodynamic scaling limit. Ann. Probab. 29(3), 1086–1110, 07 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  21. Ledoux, M.: Logarithmic Sobolev inequalities for unbounded spin systems revisted. Semester Probability XXXV. Lecture Notes in Math, Springer vol. 1755, pp. 167–194 (2001)

  22. Landim, C., Panizo, G., Yau, H.T.: Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems. Ann. Inst. H. Poincaré Probab. Statist 38(5), 739–777 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Shenglin, L.: Hydrodynamic scaling limits with deterministic initial configurations. Ann. Probab. 23(4), 1831–1852, 10 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Lu, S.L., Yau, H.T.: Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Comm. Math. Phys. 156(2), 399–433 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Menz, G.: LSI for Kawasaki dynamics with weak interaction. Comm. Math. Phys. 307(3), 817–860 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Menz, G.: The approach of Otto-Reznikoff revisited. Electron. J. Probab. 19(107), 27 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Menz, G., Nittka, R.: Decay of correlations in 1D lattice systems of continuous spins and long-range interaction. J. Stat. Phys. 156(2), 239–267 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Otto, F., Reznikoff, M.G.: A new criterion for the logarithmic Sobolev inequality and two applications. J. Funct. Anal. 243(1), 121–157 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rezakhanlou, F.: Hydrodynamic limit for a system with finite range interactions. Comm. Math. Phys. 129(3), 445–480 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Royer, G.: Une initiation aux inégalités de Sobolev logarithmiques. Cours Spéc., Soc. Math. France (1999)

  31. Varadhan, S.R.S., Yau, H.-T.: Diffusive limit of lattice gas with mixing conditions. Asian J. Math. 1(4), 623–678 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yau, H.T.: Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math. Phys. 22(1), 63–80 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Yau, H.T.: Logarithmic Sobolev inequality for lattice gases with mixing conditions. Comm. Math. Phys. 181(2), 367–408 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Zegarlinski, B.: The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice. Comm. Math. Phys. 175(2), 401–432 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is dedicated to Thomas M. Liggett (March 29, 1944–May 12, 2020). He was a great friend, mentor, teacher and colleague to us all at UCLA. This research has been partially supported by NSF grant DMS-1407558. KN is supported by the National Research Foundation of Korea (NRF-2019R1A5A1028324). The authors want to thank Felix Otto and H.T. Yau for bringing this problem to their attention. The authors are also thankful to many people discussing the problem and helping to improve the preprint. Among them are Tim Austin, Frank Barthe, Marek Biskup, Pietro Caputo, Jean-Dominique Deuschel, Max Fathi, Andrew Krieger, Michel Ledoux, Sangchul Lee, Felix Otto, Daniel Ueltschi and Tianqi Wu. The authors want to thank Marek Biskup, UCLA and KFAS for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Menz.

Additional information

Communicated by Christian Maes.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Basic Properties of the Grand Canonical Ensemble and the Canonical Ensemble

In this section, we provide useful auxiliary results for the GCE and CE, previously obtained in [15,16,17,18]. The results stated in this section hold under the conditions (2), (3), (4) and (5). Recall that a generalized GCE \(\mu ^{\sigma }_N\) with external field \(\sigma \) is defined by

$$\begin{aligned} \mu ^{\sigma }_N (\textrm{d}x) : = \frac{1}{Z} \exp \left( \sigma \sum _{i=1}^N x_i - H(x) \right) \textrm{d}x. \end{aligned}$$

Remark A.1

Again, the CE \(\mu _{N,m}\) can be thought as a conditional probability distribution which emerges from the GCE \(\mu _{N}^{\sigma }\) conditioned on the mean spin

$$\begin{aligned} \frac{1}{N} \sum _{i=1}^{N} x_i = m. \end{aligned}$$

More precisely, we have

$$\begin{aligned} \mu _N^{\sigma } \left( \textrm{d}x \mid \frac{1}{N}\sum _{i =1}^{N} x_i =m \right)&= \frac{1}{Z} \mathbbm {1}_{ \left\{ \frac{1}{N} \sum _{i=1}^{N} x_i =m \right\} }(x) \exp \left( \sigma m N - H(x) \right) \mathcal {L}^{N-1}(\textrm{d}x) \\&= \frac{1}{\widetilde{Z}} \mathbbm {1}_{ \left\{ \frac{1}{N} \sum _{i =1}^{N} x_i =m \right\} }\left( x\right) \exp \left( - H(x) \right) \mathcal {L}^{N-1}(\textrm{d}x) \\&= \mu _{N,m} (\textrm{d}x). \end{aligned}$$

The following statement tells that the variance of the mean spin of the modified GCE \(\mu ^{\sigma }_N\) is well behaved.

Lemma A.2

(Lemma 1 in [18]). There exists a constant \(C>0\), uniform in N and \(\sigma \), such that

$$\begin{aligned} \frac{1}{C} \le \frac{1}{N} {{\,\textrm{var}\,}}_{\mu ^{ \sigma }_N} \left( \sum _{k=1}^N X_k \right) \le C. \end{aligned}$$

Define the (normalized) free energy \(A_N : \mathbb {R} \rightarrow \mathbb {R}\) by

$$\begin{aligned} A_N(\sigma ) : = \frac{1}{N} \log \int _{\mathbb {R}^N} \exp \left( \sigma \sum _{i=1}^N x_i - H(x) \right) \textrm{d}x. \end{aligned}$$

The following lemma states that the free energy \(A_N\) is uniformly strictly convex.

Lemma A.3

(Lemma 2 in [18]). There is a constant \(C >0\), uniform in N and \(\sigma \), such that

$$\begin{aligned} \frac{1}{C} \le \frac{\textrm{d}^2}{\textrm{d}\sigma ^2} A_N(\sigma ) \le C. \end{aligned}$$

Let us now introduce the definition of local, intensive and extensive functions.

Definition A.4

(Local, intensive and extensive functions/ observables). For a function \(f : \mathbb {R}^{\mathbb {Z}} \rightarrow \mathbb {C}\), denote \({{\,\textrm{supp}\,}}f \) by the minimal subset of \(\mathbb {Z}\) with \(f(x) = f\left( x^{{{\,\textrm{supp}\,}}f} \right) \). We call f a local function if it has a finite support independent of N. A function f is called intensive if there is a positive constant \(\varepsilon \) such that \(|{{\,\textrm{supp}\,}}f | \lesssim N^{1-\varepsilon }\). A function f is called extensive if it is not intensive.

The following proposition claims the exponential decay of correlations for the GCE.

Proposition A.5

(Lemma 6 in [16]). There exists a constant \(C>0\) such that for any intensive functions \(f, g : \mathbb {R}^{N} \rightarrow \mathbb {R}\),

$$\begin{aligned}&\left| {{\,\textrm{cov}\,}}_{\mu _N ^{\sigma }} \left( f, g \right) \right| \lesssim \Vert \nabla f\Vert _{L^2 (\mu _N ^{\sigma })}\Vert \nabla g\Vert _{L^2 (\mu _N ^{ \sigma })} \exp \left( -C \text {dist} \left( {{\,\textrm{supp}\,}}f , {{\,\textrm{supp}\,}}g \right) \right) . \end{aligned}$$

The following moment estimate is a consequence of Proposition A.5.

Lemma A.6

(Lemma 3.2 in [17]). For each \(k \ge 1\), there exists a constant \(C = C(k)>0\) such that for any smooth function \(f : \mathbb {R}^{\Lambda } \rightarrow \mathbb {R}\),

$$\begin{aligned} \mathbb {E}_{\mu _N^{ \sigma }} \left[ \left| f(X) - \mathbb {E}_{\mu _N^{ \sigma }} \left[ f(X) \right] \right| ^k \right] \le C(k) \Vert \nabla f \Vert _{\infty }^k. \end{aligned}$$

We now introduce the principle of equivalence of observables. We first relate the external field \(\sigma \) of \(\mu _N ^{\sigma }\) and the mean spin m of \(\mu _{N,m}\) as follows:

Definition A.7

For each \(m \in \mathbb {R}\), we choose \(\sigma = \sigma _N(m) \in \mathbb {R}\) such that

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}\sigma } A_N( \sigma ) = m. \end{aligned}$$
(85)

Denoting \(m_i : = \int x_i \mu _N ^{\sigma } (\textrm{d}x)\) for each \(i \in [N]\), we equivalently get

$$\begin{aligned} m = \frac{\textrm{d}}{\textrm{d}\sigma } A_N ( \sigma ) = \frac{1}{N} \frac{ \int _{\mathbb {R}^N} \sum _{i=1}^{N} x_i \exp \left( \sigma \sum _{i=1}^{N} x_i - H(x) \right) \textrm{d}x }{ \int _{\mathbb {R}^N} \exp \left( \sigma \sum _{i=1}^{N} x_i - H(x) \right) \textrm{d}x } = \frac{1}{N}\sum _{i=1}^N m_i . \end{aligned}$$

The following proposition states the equivalence of ensembles results for GCE \(\mu _N ^{\sigma }\) and CE \(\mu _{N,m}\) with \(\sigma \) and m related by (85).

Proposition A.8

(Theorem 2.7 in [15]). There exist constants \(C,N_0>0\) such that for any intensive function \(f : \mathbb {R}^{N} \rightarrow \mathbb {R}\) and \(N \ge N_0\),

$$\begin{aligned} \left| \mathbb {E}_{\mu _N^{\sigma }} \left[ f \right] - \mathbb {E}_{\mu _{N,m}} \left[ f \right] \right| \le C \frac{|{{\,\textrm{supp}\,}}f|}{N} \Vert \nabla f \Vert _{\infty }. \end{aligned}$$

Finally, we state the exponential decay of correlations for the CE.

Proposition A.9

(Theorem 2.10 in [15]). There exist constants \(C,N_0>0\) such that for any intensive functions \(f, g : \mathbb {R}^{N} \rightarrow \mathbb {R}\) and \(N \ge N_0\),

$$\begin{aligned}&\left| {{\,\textrm{cov}\,}}_{\mu _{N,m} } \left( f, g \right) \right| \\&\quad \le C \ \Vert \nabla f \Vert _{L^{\infty }(\mu _N^{\sigma })}\Vert \nabla g \Vert _{L^{\infty }(\mu _N^{\sigma })} \left( \frac{ |{{\,\textrm{supp}\,}}f | + |{{\,\textrm{supp}\,}}g | }{N} + \exp \left( -C\text {dist}\left( {{\,\textrm{supp}\,}}f, {{\,\textrm{supp}\,}}g \right) \right) \right) . \end{aligned}$$

Here, \(\sigma \) and m are related by (85).

Appendix B. Derivatives of Coarse-Grained Hamiltonian

In this section, we provide the first and second derivative formula for the coarse-grained Hamiltonian. First, we state an explicit formula for \(\bar{H}\), obtained in [25].

Lemma B.1

(Lemma 1 in [25]). For \(z \in X\) with \(Pz=0\) and \(y \in Y\), define \(H_{M}(z,y)\) by

$$\begin{aligned} H_{M} (z,y) : = \frac{1}{2}\langle z, (Id +M)z \rangle + \langle z, MNP^* y\rangle + \sum _{i=1}^N \psi _b (z_i + ( NP^* y )_i ), \end{aligned}$$
(86)

where \(M=(M_{ij})_{1\le i,j\le n}\) is an interaction matrix in the Hamiltonian (cf. (1)). Then

$$\begin{aligned} \bar{H}(y) = \frac{1}{2} \langle y, (Id + PM NP^*) y \rangle _Y - \frac{1}{N}\log \int _{Px=0} \exp \left( -H_{M} (x,y) \right) \mathcal {L}(\textrm{d}x). \end{aligned}$$

Proof of Lemma B.1

For \(x \in X\) with \(Px=y\) and \(y \in Y\), let \(z = x - NP^*y\). Recalling the identity \(PNP^* = Id_Y\), we have \(Pz=0\). We then write the Hamiltonian H as

$$\begin{aligned} H(x)&= \sum _{i =1 }^{N} \left( \psi (x_i) +\frac{1}{2}\sum _{j : \ 1 \le |j-i| \le R } M_{ij}x_i x_j \right) \nonumber \\&= \frac{1}{2} \langle x , (\text {Id} + Mx \rangle + \sum _{i=1}^{N} \psi _b ( x_i) \nonumber \\&= \frac{1}{2} \langle z + NP^* y , (\text {Id} + M ) ( z + NP^* y) \rangle + \sum _{i=1}^{N} \psi _b (z_i + (NP^* y)_i ) \nonumber \\&= \frac{1}{2} \langle z , (\text {Id} + M) z \rangle + \langle z, NP^* y \rangle + \langle z , M NP^* y \rangle + \frac{1}{2} \langle NP^* y, (\text {Id} + M ) NP^* y \rangle \nonumber \\&\quad + \sum _{i=1}^{N} \psi _b (z_i + (NP^* y)_i ). \end{aligned}$$
(87)

Because \(Pz = 0\), we have

$$\begin{aligned} \langle z , NP^* y \rangle = N \langle Pz, y \rangle _Y = 0. \end{aligned}$$
(88)

It also holds by \(PNP^* = \text {Id}_Y\) that

$$\begin{aligned} \frac{1}{2} \langle NP^* y , (\text {Id} +M)NP^* y \rangle&= \frac{N}{2} \langle y , PNP^* y + PM NP^ * y \rangle _Y \nonumber \\&= \frac{N}{2} \langle y , (\text {Id} + PMNP^*) y \rangle _Y. \end{aligned}$$
(89)

Plugging (88) and (89) into (87) yields

$$\begin{aligned} H(x) = \frac{N}{2} \langle y, (\text {Id} + PM NP^*) y \rangle _Y + H_{M} (z, y) , \end{aligned}$$

and hence,

$$\begin{aligned} \bar{H}(y)&= - \frac{1}{N} \log \int _{Px = y} \exp \left( - H(x) \right) \mathcal {L} (\textrm{d}x) \\&= \frac{1}{2} \langle y, (\text {Id} + PM NP^*) y \rangle _Y - \frac{1}{N}\log \int _{Pz=0} \exp \left( -H_{M} (z,y) \right) \mathcal {L}(\textrm{d}z). \end{aligned}$$

\(\square \)

Next, we compute the first derivative of the coarse-grained Hamiltonian \(\bar{H}\) using Lemma B.1.

Lemma B.2

For each \(l \in [M]\), it holds that

$$\begin{aligned} \frac{\partial }{\partial y_l } \bar{H} (y) = \frac{1}{M} y_l + \frac{1}{N}\mathbb {E}_{\mu _{N,m}(\textrm{d}x|y)}\left[ \sum _{i=1}^N \sum _{j \in B(l)} M_{ij}X_i + \sum _{i \in B(l)} \psi _b ' (X_i)\right] . \end{aligned}$$

Proof of Lemma B.2

Recall that the inner product \(\langle \cdot , \cdot \rangle _Y\) is given by

$$\begin{aligned} \langle x, y \rangle _Y = \frac{1}{M} \sum _{l =1}^M x_l y_l. \end{aligned}$$

First of all, noting that

$$\begin{aligned} \langle y, PMNP^* y \rangle _Y =\frac{1}{N} \sum _{l, n = 1}^{M}\sum _{i \in B(l), j \in B(n)} M_{ij} y_l y_n, \end{aligned}$$

we have

$$\begin{aligned} \frac{\partial }{\partial y_l} \left( \frac{1}{2} \langle y , (\text {Id}+ PMNP^* )y \rangle _Y \right) = \frac{1}{M} y_l + \frac{1}{N} \sum _{n=1}^M \sum _{i \in B(l), j \in B(n)} M_{ij} y_n. \end{aligned}$$
(90)

In addition, differentiating (86) yields

$$\begin{aligned}&\frac{\partial }{\partial y_l}\left( H_{M} (x,y) \right) \\&\quad = \frac{\partial }{\partial y_l} \left( \langle x, MNP^* y \rangle \right) + \frac{\partial }{\partial y_l} \left( \sum _{i=1}^N \psi _b ( x_i + (NP^* y)_i ) \right) \\&\quad = \sum _{i=1}^N \sum _{j \in B(l)} M_{ij} x_i + \sum _{i \in B(l)} \psi _b ' (x_i + (NP^* y)_i ) \\&\quad = \sum _{i=1}^N \sum _{j \in B(l)} M_{ij} (x_i + (NP^* y) _i )\\&\qquad - \sum _{i=1}^N \sum _{j \in B(l)} M_{ij} (NP^* y) _i + \sum _{i \in B(l)} \psi _b ' (x_i + (NP^* y)_i ) \\&\quad = \sum _{i=1}^N \sum _{j \in B(l)} M_{ij} (x_i + (NP^* y) _i ) + \sum _{i \in B(l)} \psi _b ' (x_i + (NP^* y)_i )\\&\qquad - \sum _{n=1}^M \sum _{ i \in B(n), j \in B(l)}M_{ij} y_n. \end{aligned}$$

As a consequence, we obtain

$$\begin{aligned}&\frac{\partial }{\partial y_l} \left( - \frac{1}{N}\log \int _{Px=0} \exp \left( -H_{M} (x,y) \right) \mathcal {L}(\textrm{d}x) \right) \nonumber \\&\qquad = \frac{1}{N} \frac{\int _{Px=0} \frac{\partial }{\partial y_l} \left( H_{M} (x,y) \right) \exp \left( -H_{M} (x,y) \right) \mathcal {L}(\textrm{d}x)}{\int _{Px=0} \exp \left( -H_{M} (x,y) \right) \mathcal {L}(\textrm{d}x)} \nonumber \\&\qquad = \frac{1}{N} \mathbb {E}_{\mu _{N,m}(\textrm{d}x|y)}\left[ \sum _{i=1}^N \sum _{j \in B(l)} M_{ij}X_i + \sum _{i \in B(l)} \psi _b ' (X_i) - \frac{1}{N} \sum _{n=1}^M \sum _{i \in B(n), j \in B(l)} M_{ij} y_n \right] . \end{aligned}$$
(91)

Combining (90) and (91) with symmetry of \(M_{ij}\), i.e., \(M_{ij} = M_{ji}\), we have the desired equation

$$\begin{aligned} \frac{\partial }{\partial y_l } \bar{H} (y) = \frac{1}{M} y_l + \frac{1}{N}\mathbb {E}_{\mu _{N,m}(\textrm{d}x|y)}\left[ \sum _{i=1}^N \sum _{j \in B(l)} M_{ij}X_i + \sum _{i \in B(l)} \psi _b ' (X_i)\right] . \end{aligned}$$

\(\square \)

The second derivatives of the coarse-grained Hamiltonian \(\bar{H}\) follow from a similar calculations.

Lemma B.3

(Lemma 2 in [25]). For \(l, n \in [M]\), we have

$$\begin{aligned} \left( {{\,\textrm{Hess}\,}}_Y \bar{H} (y) \right) _{ln}&= \delta _{ln} + \delta _{ln} \frac{1}{K} \int \sum _{i \in B(l)}\psi _b '' (x_i) \mu _{N, m} (\textrm{d}x | y) + \frac{1}{K} \sum _{i \in B(l), j \in B(n)}M_{ij} \\&\quad - \frac{1}{K} {{\,\textrm{cov}\,}}_{\mu _{N, m}(\textrm{d}x|y)} \left( \sum _{j \in B(l)} \left( \sum _{i=1}^{N} M_{ij} X_i + \psi _b ' (X_j) \right) , \right. \\&\quad \left. \sum _{j \in B(n)} \left( \sum _{i=1}^{N} M_{ij} X_i + \psi _b ' (X_j) \right) \right) . \end{aligned}$$

Appendix C. Criteria for the Logarithmic Sobolev Inequality

In this section, we state several standard criteria for deducing a LSI. For proofs we refer to the literature. For a general introduction and more comments on the LSI, we refer the reader to [2, 20, 21, 30].

Theorem C.1

(Tensorization Principle [11]). Let \(\mu _1\) and \(\mu _2\) be probability measures on Euclidean spaces \(X_1\) and \(X_2\), respectively. Suppose that \(\mu _1\) and \(\mu _2\) satisfy LSI\((\rho _1)\) and LSI\((\rho _2)\), respectively. Then the product measure \(\mu _1 \bigotimes \mu _2\) satisfies LSI\((\rho )\), where \(\rho = \min \{\rho _1, \rho _2\}\).

Theorem C.2

(Holley–Stroock Perturbation Principle [13]). Let \(\mu _1\) be a probability measure on Euclidean space X and \( \psi _b : X \rightarrow \mathbb {R}\) be a bounded function. Define a probability measure \(\mu _2\) on X by

$$\begin{aligned} \mu _2 (\textrm{d}x) : = \frac{1}{Z} \exp \left( - \psi _b (x) \right) \mu _1 (\textrm{d}x). \end{aligned}$$

Suppose that \(\mu _1\) satisfies LSI\((\rho _1)\). Then \(\mu _2\) also satisfies LSI with constant

$$\begin{aligned} \rho _2 = \rho _1 \exp \left( - osc \psi _b \right) , \end{aligned}$$

where \(osc \psi _b : = \sup \psi _b - \inf \psi _b \).

Theorem C.3

(Bakry–Émery criterion [1]) Let X be a N-dimensional Euclidean space and \(H \in C^2 (X)\). Define a probability measure \(\mu \) on X by

$$\begin{aligned} \mu (\textrm{d}x): = \frac{1}{Z} \exp \left( - H(x)\right) \textrm{d}x. \end{aligned}$$

Suppose that there is a constant \(\rho >0\) such that \({{\,\textrm{Hess}\,}}H \ge \rho \), in other words

$$\begin{aligned} \langle v, {{\,\textrm{Hess}\,}}H(u) v \rangle \ge \rho |v|^2,\quad \forall v\in T_x X. \end{aligned}$$

Then \(\mu \) satisfies LSI\((\rho )\).

Theorem C.4

(Otto-Reznikoff Criterion [28]) Let \(X = X_1 \times \cdots \times X_N\) be a direct product of Euclidean spaces and \(H \in C^2 (X)\). Define a probability measure \(\mu \) on X by

$$\begin{aligned} \mu (\textrm{d}x) : = \frac{1}{Z} \exp \left( - H(x) \right) \textrm{d}x. \end{aligned}$$

Assume that

  • For each \(i \in [N]\), the conditional measures \(\mu (\textrm{d}x_i | \bar{x}_i )\) satisfy LSI\((\rho _i)\) for any \(\bar{x}_i := (x_1,\ldots ,x_{i-1},x_{i+1},\ldots ,x_N)\in X_1\times \cdots \times X_{i-1} \times X_{i+1} \times \cdots \times X_N\).

  • For each \( i \ne j \in [N]\) there is a constant \(\kappa _{ij}>0\) such that

    $$\begin{aligned} \left| \nabla _i \nabla _j H(x) \right| \le \kappa _{ij}, \qquad \forall x \in X. \end{aligned}$$

    Here, \(| \cdot |\) denotes the operator norm of a bilinear form.

  • Define a symmetric matrix \(A= (A_{ij})_{1 \le i, j \le N}\) by

    $$\begin{aligned} A_{ij} = {\left\{ \begin{array}{ll} \rho _i, \qquad &{} i=j, \\ - \kappa _{ij}, \qquad &{} i \ne j. \end{array}\right. } \end{aligned}$$

    Assume that there is a constant \(\rho >0\) with

    $$\begin{aligned} A \ge \rho {{\,\textrm{Id}\,}}, \end{aligned}$$

    in the sense of quadratic forms.

Then \(\mu \) satisfies LSI\((\rho )\).

Theorem C.5

(Two-Scale Criterion for LSI [9]). Let X and Y be Euclidean spaces. Consider a probability measure \(\mu \) on X defined by

$$\begin{aligned} \mu (\textrm{d}x) : = \frac{1}{Z} \exp \left( -H(x)\right) \textrm{d}x. \end{aligned}$$

Let \(P : X \rightarrow Y\) be a linear operator such that for some \(N \in \mathbb {N}\),

$$\begin{aligned} PNP^* = {{\,\textrm{Id}\,}}_Y. \end{aligned}$$

Define

$$\begin{aligned}&\kappa : = \max \left\{ \langle {{\,\textrm{Hess}\,}}H(x) \cdot u, v \rangle : \right. \\ {}&\left. u \in Ran (NP^* P), v \in Ran ({{\,\textrm{Id}\,}}_X - NP^* P), |u|=|v|=1 \right\} . \end{aligned}$$

Assume that

  • \(\kappa < \infty \).

  • There is \(\rho _1>0\) such that the conditional measure \(\mu (\textrm{d}x | Px=y)\) satisfies LSI\((\rho _1)\) for all \(y \in Y\).

  • There is \(\rho _2>0\) such that the marginal measure \(\bar{\mu }= P_{\#}\mu \) satisfies LSI\((\rho _2 N)\).

Then \(\mu \) satisfies LSI\((\rho )\), where

$$\begin{aligned} \rho : = \frac{1}{2} \left( \rho _1 +\rho _2 + \frac{ \kappa ^2}{\rho _1} - \sqrt{ \left( \rho _1 + \rho _2 + \frac{\kappa ^2 }{\rho _1} \right) ^2 - 4 \rho _1 \rho _2 } \right) >0. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, Y., Menz, G. & Nam, K. Hydrodynamic Limit of the Kawasaki Dynamics on the 1d-lattice with Strong, Finite-Range Interaction. Ann. Henri Poincaré 24, 2483–2536 (2023). https://doi.org/10.1007/s00023-023-01271-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01271-8

Mathematics Subject Classification

Navigation