Skip to main content

Advertisement

Log in

On the Temporal Decay for the 2D Non-resistive Incompressible MHD Equations

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Califano–Chiuderi (Phys Rev E 60(Part B): 4701–4707, 1999) gave the numerical observation that the energy of the MHD equations is dissipated at a rate independent of the ohmic resistivity, which was first proved by Ren et al. (J Funct Anal 267: 503–541, 2014) (the initial data near \((0,\vec {e}_1)\), \(\vec {e}_1=(1,0)\)). Precisely, they showed some explicit decay rates of solutions in \(L^2\) norm. So a nature question is whether the obtained decay rates in Ren et al. (J Funct Anal 267: 503–541, 2014) are optimal. In this paper, we aim at giving the explicit decay rates of solutions in both \(L^2\) norm and \(L^\infty \) norm. In particular, our decay rate in terms of \(L^2\) norm improves the previous work Ren et al. (J Funct Anal 267: 503–541, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi, H., Zhang, P.: On the global well-posedness of 3-D MHD system with initial data near the equilibrium state. Commun. Pure. Appl. Math. 70, 1509–1561 (2017)

    Article  MATH  Google Scholar 

  2. Bardos, C., Sulem, C., Sulem, P.L.: Longtime dynamics of a conductive fluid in the presence of a strong magnetic field. Trans. Am. Math. Soc. 305, 175–191 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cabannes, H.: Theoretical Magneto-Fluid Dynamics. Academic Press, New York (1970)

    Google Scholar 

  4. Califano, F., Chiuderi, C.: Resistivity-independent dissipation of magnetohydrodynamic waves in an inhomogeneous plasma. Phys. Rev. E 60(Part B), 4701–4707 (1999)

    Article  ADS  Google Scholar 

  5. Chemin, J.Y., McCormick, D.S., Robinson, J.C., Rodrigo, J.L.: Local existence for the non-resistive MHD equations in Besov spaces. Adv. Math. 286, 1–31 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng, W., Zhang, P.: Large time behavior of solutions to 3-D MHD system with initial data near equilibrium. Arch. Ration. Mech. Anal. online

  7. Duvaut, G., Lions, J.L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46, 241–279 (1972)

    Article  MATH  Google Scholar 

  8. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier- Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, F., Xu, L., Zhang, P.: Global small solutions to 2-D MHD system with small data. J. Differ. Equ. 259, 5440–5485 (2015)

    Article  MATH  ADS  Google Scholar 

  10. Lin, F., Zhang, P.: Global small solutions to MHD type system (I): 3-D case. Commun. Pure. Appl. Math 67, 531–580 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin, F., Zhang, T.: Global small solutions to a complex fluid model in three dimensional. Arch. Ration. Mech. Anal. 216, 905–920 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pan, R., Zhou, Y., Zhu, Y.: Global classical solutions of three dimensional viscous MHD system without magnetic diffusion on periodic boxes. Arch. Ration. Mech. Anal. 227, 637–662 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ren, X., Wu, J., Xiang, Z., Zhang, Z.: Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion. J. Funct. Anal. 267, 503–541 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Wan, R.: On the uniqueness for the 2D MHD equations without magnetic diffusion. Nonlinear Anal. Real World Appl. 30, 32–40 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, J., Wu, Y., Xu, X.: Global small solution to the 2D MHD system with a velocity damping term. SIAM J. Math. Anal. 47, 2630–2656 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, J., Wu, Y.: Global small solutions to the compressible 2D magnetohydrodynamic system without magnetic diffusion. Adv. Math. 310, 759–888 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, L., Zhang, P.: Global small solutions to three-dimensional incompressible MHD system. SIAM J. Math. Anal. 47, 26–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, T.: An elementary proof of the global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system. arXiv:1404.5681v2 [math.AP]

  20. Zhang, T.: Global solutions to the 2D viscous, non-resistive MHD system with large background magnetic field. J. Differ. Equ. 260, 5450–5480 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Zhifei Zhang for his suggestions and helpful comments. This work was supported by the NSF of China 11901301, 12161077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renhui Wan.

Additional information

Communicated by Nader Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In this section, we give the proof of some lemmas.

Proof of Lemma 4.3

Thanks to (3.13), (4.3)\(_7\) for \(k=0\) and (4.3)\(_1\) for \(k=1\) and \(r=2\), we get

$$\begin{aligned} \begin{aligned} \Vert M_1(\partial ,t)f\Vert _{\mathcal {F}L^2(D_4)} \lesssim&\ \min \{\Vert \mathcal {G}_{1,2}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^2(D_4)}, \Vert \mathcal {G}_{1,1}e^{-\mathcal {G}_{2,2}t}\widehat{|\nabla |^{-1}f}\Vert _{L^2(D_4)}\}\\ \lesssim&\ \langle t\rangle ^{-\frac{1}{2}}\min \{\Vert f\Vert _{L^1\cap L^2},\Vert |\nabla |^{-1}f\Vert _{L^2}\}, \end{aligned} \end{aligned}$$

which yields (4.11)\(_1\). It follows (4.11)\(_2\) by using (3.13),

$$\begin{aligned} \Vert |\nabla |M_1(\partial ,t)f\Vert _{\mathcal {F}L^r(D_4)} \lesssim \ \Vert \mathcal {G}_{1,1}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^r(D_4)} \end{aligned}$$

and (4.3)\(_1\) for \(k=1\). (4.11)\(_3\) can be obtained by using (3.13),

$$\begin{aligned} \Vert \partial _xM_1(\partial ,t)f\Vert _{\mathcal {F}L^r(D_4)} \lesssim \ \Vert \mathcal {G}_{2,2}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^r(D_4)} \end{aligned}$$

and (4.3)\(_1\) for \(k=2\). Combining with (3.13),

$$\begin{aligned} \Vert M_1(\partial ,t)f\Vert _{\mathcal {F}L^r(D_4)} \lesssim \ \Vert \mathcal {G}_{1,2}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^r(D_4)}, \end{aligned}$$

(4.3)\(_2\) for \(k=1\) and \(\delta =0.01\) leads (4.11)\(_4\). Combining with (3.13),

$$\begin{aligned} \Vert |\nabla |^{-1}M_1(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{42})} \lesssim \ \Vert \mathcal {G}_{1,3}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_{42})} \end{aligned}$$

and (4.3)\(_6\) for \(k=0\), \(q=p=4/3\), we can get (4.11)\(_5\). It follows (4.11)\(_6\) by using (3.13),

$$\begin{aligned} \Vert \mathcal {R}_1M_1(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{42})} \lesssim \ \Vert \mathcal {G}_{2,3}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_{42})}, \end{aligned}$$

and (4.3)\(_4\) for \(k=1\). It follows (4.11)\(_7\) by using (3.13),

$$\begin{aligned} \Vert \mathcal {R}_1M_1(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \Vert \mathcal {G}_{2,3}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_4)}, \end{aligned}$$

and (4.3)\(_3\) for \(k=1\). Applying

$$\begin{aligned} \Vert |\nabla |\mathcal {R}_1M_1(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} +\Vert \mathcal {R}_{11}M_1(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \Vert \mathcal {G}_{2,2}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_4)}, \end{aligned}$$

and (4.3)\(_1\) for \(k=2\) and \(r=1\) can lead (4.11)\(_8\). Similarly, using

$$\begin{aligned} \Vert \partial _x\mathcal {R}_1M_1(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \!+\!\Vert |\nabla |\mathcal {R}_{11}M_1(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \!\lesssim \! \Vert \mathcal {G}_{3,3}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_4)}, \end{aligned}$$

and (4.3)\(_1\) for \(k=3\) and \(r=1\) can lead (4.11)\(_9\). \(\square \)

Proof of Lemma 4.4

Using (3.13) and (4.3)\(_1\) for \(k=0\), one can easily get (4.12)\(_1\). By (3.13),

$$\begin{aligned} \Vert \partial _xM_2(\partial ,t)f\Vert _{\mathcal {F}L^r(D_{4})} \lesssim \ \Vert |\nabla |\mathcal {G}_{1,1}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^r(D_4)}, \end{aligned}$$

and (4.3)\(_1\) for \(k=1\), we can obtain (4.12)\(_2\). Similarly, one can also get (4.12)\(_3\). Using a similar way leading (4.5) for \(k=0\), we can get (4.12)\(_4\). Thanks to

$$\begin{aligned} \Vert \mathcal {R}_1^lM_2(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \langle t\rangle ^{-\frac{l}{2}}\Vert M_2(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \langle t\rangle ^{-\frac{l}{2}} \Vert \mathcal {G}_{0,0}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_4)}, \end{aligned}$$

it follows (4.12)\(_5\) by using (4.3)\(_1\) for \(k=0\) and \(r=1\). Due to

$$\begin{aligned} \Vert \partial _x\mathcal {R}_1M_2(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \Vert |\nabla |\mathcal {R}_1^2M_2(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})}, \end{aligned}$$

it follows (4.12)\(_6\) by using (4.12)\(_5\). \(\square \)

Proof of Lemma 4.5

Using (3.13), (4.1)\(_2\) for \(k=1\), (4.3)\(_1\) for \(k=1\) and \(r=2\), we have

$$\begin{aligned} \Vert M_3(\partial ,t)f\Vert _{\mathcal {F}L^2(D_{4})}\lesssim & {} \ \Vert e^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^2(D_{4})}+ \Vert |\vec {\xi }|^{-1}\mathcal {G}_{1,1}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^2(D_4)}\\\lesssim & {} \ \langle t\rangle ^{-\frac{1}{2}}\Vert |\nabla |^{-1}f\Vert _{H^1}. \end{aligned}$$

Using (3.13), (4.1)\(_2\) for \(k=0\) and (4.3)\(_7\) for \(k=0\), we have

$$\begin{aligned} \Vert M_3(\partial ,t)f\Vert _{\mathcal {F}L^2(D_{4})} \lesssim \ \Vert e^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^2(D_{4})}+ \Vert \mathcal {G}_{1,2}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^2(D_4)} \lesssim \ \langle t\rangle ^{-\frac{1}{2}}\Vert f\Vert _{L^1\cap L^2}. \end{aligned}$$

Thus, we complete the proof of (4.13)\(_1\). Using (3.13), one can get the first estimate of (4.13)\(_2\) by applying

$$\begin{aligned} \Vert M_3(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \Vert e^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^1(D_{4})}+ \Vert \mathcal {G}_{2,4}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_4)}, \end{aligned}$$

(4.1)\(_4\) for \(k=0\), and (4.3)\(_5\) for \(k=0\). Using (3.13), one can get the second estimate of (4.13)\(_2\) by applying

$$\begin{aligned} \Vert M_3(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \Vert |\nabla |e^{\frac{1}{2}t\Delta }|\nabla |^{-1}f\Vert _{\mathcal {F}L^1(D_{4})}+ \Vert \mathcal {G}_{2,3}e^{-\mathcal {G}_{2,2}t}|\vec {\xi }|^{-1}\widehat{f}\Vert _{L^1(D_4)}, \end{aligned}$$

(4.1)\(_4\) for \(k=1\), and (4.3)\(_3\) for \(k=1\). Using (3.13), one can get the first estimate of (4.13)\(_3\) by applying

$$\begin{aligned} \Vert \partial _yM_3(\partial ,t)f\Vert _{\mathcal {F}L^2(D_{4})} \lesssim \ \Vert |\nabla |e^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^2(D_{4})}+ \Vert \mathcal {G}_{1,1}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^2(D_4)}, \end{aligned}$$

(4.1)\(_2\) for \(k=1\), and (4.3)\(_1\) for \(k=1\). Using (3.13), one can get the second estimate of (4.13)\(_3\) by applying

$$\begin{aligned} \Vert \partial _yM_3(\partial ,t)f\Vert _{\mathcal {F}L^2(D_{4})} \lesssim \ \Vert |\nabla |^2e^{\frac{1}{2}t\Delta }|\nabla |^{-1}f\Vert _{\mathcal {F}L^2(D_{4})}+ \Vert \mathcal {G}_{2,2}e^{-\mathcal {G}_{2,2}t}|\vec {\xi }|^{-1}\widehat{f}\Vert _{L^2(D_4)}, \end{aligned}$$

(4.1)\(_2\) for \(k=2\), and (4.3)\(_1\) for \(k=2\). Using (3.13), one can get the third estimate of (4.13)\(_3\) by applying

$$\begin{aligned} \Vert \partial _yM_3(\partial ,t)f\Vert _{\mathcal {F}L^2(D_{4})} \lesssim \ \Vert |\nabla |e^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^2(D_{4})}+ \Vert \mathcal {G}_{2,3}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^2(D_4)}, \end{aligned}$$

(4.1)\(_1\) for \(k=1\), and (4.3)\(_7\) for \(k=1\). So we conclude the proof of (4.13)\(_3\). For (4.13)\(_4\), we only show the case \(r=2\), and other cases can be bounded similarly. Using \(|\xi |\lesssim |\vec {\xi }|^2\),

$$\begin{aligned} \Vert \partial _xM_3(\partial ,t)f\Vert _{\mathcal {F}L^2(D_{4})} \lesssim \ \Vert \partial _xe^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^2(D_{4})}+ \Vert \mathcal {G}_{2,2}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^2(D_4)}, \end{aligned}$$

one can get (4.13)\(_4\) for \(r=2\) by (4.1)\(_2\) for \(k=2\) and (4.3)\(_1\) for \(k=2\). Using \(|\xi |\lesssim |\vec {\xi }|^2\),

$$\begin{aligned} \Vert \partial _xM_3(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \Vert \partial _xe^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^1(D_{4})}+ \Vert \mathcal {G}_{2,4}e^{-\mathcal {G}_{2,2}t}\widehat{\partial _xf}\Vert _{L^1(D_4)}, \end{aligned}$$

one can get the first bound of (4.13)\(_5\) by (4.1)\(_4\) for \(k=2\) and (4.3)\(_5\) for \(k=0\). Using \(|\xi |\lesssim |\vec {\xi }|^2\),

$$\begin{aligned} \Vert \partial _xM_3(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \Vert \partial _xe^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^1(D_{4})}+ \Vert \mathcal {G}_{3,4}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_4)}, \end{aligned}$$

one can get the second bound of (4.13)\(_5\) by (4.1)\(_4\) for \(k=2\) and (4.3)\(_3\) for \(k=2\). Using

$$\begin{aligned} \Vert e^{ct\Delta }f\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-\frac{3}{4}}(\Vert f\Vert _{L^1_y(L^2_x)} +\Vert \widehat{f}\Vert _{L^1}), \end{aligned}$$

which can be proved by using the similar arguments yielding (4.2), and

$$\begin{aligned} \Vert \mathcal {G}_{2,4}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_4)}\le & {} \ \Vert \mathcal {G}_{2,2}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_{41})} +\Vert \mathcal {G}_{2,4}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_{42})}\\\le & {} \ \langle t\rangle ^{-\frac{3}{4}}(\Vert \widehat{f}\Vert _{L^1}+\Vert f\Vert _{L^1_y(L^2_x)}), \end{aligned}$$

which can be obtained by using (4.3)\(_1\) for \(k=2\) and (4.3)\(_6\) for \(k=1\), \(p=\frac{4}{3}\) and \(q=2\), we have

$$\begin{aligned} \Vert \partial _xM_3(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})}\lesssim & {} \ \Vert e^{\frac{1}{2}t\Delta }\partial _xf\Vert _{\mathcal {F}L^1(D_{4})}+ \Vert \mathcal {G}_{2,4}e^{-\mathcal {G}_{2,2}t}\widehat{\partial _xf}\Vert _{L^1(D_4)}\\\lesssim & {} \ \langle t\rangle ^{-\frac{3}{4}}(\Vert \widehat{\partial _xf}\Vert _{L^1}+\Vert \partial _xf\Vert _{L^1_y(L^2_x)}), \end{aligned}$$

which completes the proof of the third bound of (4.13)\(_5\). Using (4.1)\(_2\) for \(k=2\), (4.3)\(_1\) for \(k=2\) and

$$\begin{aligned} \Vert \Delta M_3(\partial ,t)f\Vert _{\mathcal {F}L^2(D_{4})} \lesssim \ \Vert \Delta e^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^2(D_{4})}+ \Vert \mathcal {G}_{2,2}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^2(D_4)}, \end{aligned}$$

we can get (4.13)\(_6\). Using \(|\xi |\lesssim |\vec {\xi }|^2\), (4.1)\(_4\) for \(k=5\), (4.3)\(_1\) for \(k=5\) and

$$\begin{aligned} \Vert \partial _x^2\mathcal {R}_1 M_3(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \Vert \partial _x^2\mathcal {R}_1 e^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^1(D_{4})}+ \Vert \mathcal {G}_{5,5}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_4)}, \end{aligned}$$

we can get (4.13)\(_7\). Using \(|\xi |\lesssim |\vec {\xi }|^2\), (4.1)\(_4\) for \(k=3\), (4.3)\(_1\) for \(k=3\) and

$$\begin{aligned} \Vert \partial _x|\nabla | M_3(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \Vert \partial _x |\nabla | e^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^1(D_{4})}+ \Vert \mathcal {G}_{3,3}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_4)}, \end{aligned}$$

we can get (4.13)\(_8\) for \(r=1\). Other cases \(1<r\le 2\) can be bounded similarly. Using \(|\xi |\lesssim |\vec {\xi }|^2\), (4.1)\(_4\) for \(k=4\), (4.3)\(_1\) for \(k=4\) and

$$\begin{aligned} \Vert \partial _x^2 M_3(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \Vert \partial _x^2 e^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^1(D_{4})}+ \Vert \mathcal {G}_{4,4}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_4)}, \end{aligned}$$

we can get (4.13)\(_9\). Using \(|\xi |\lesssim |\vec {\xi }|^2\), (4.1)\(_4\) for \(k=2\), (4.3)\(_1\) for \(k=2\) and

$$\begin{aligned} \Vert \mathcal {R}_1 M_3(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \Vert \partial _x e^{\frac{1}{2}t\Delta }|\nabla |^{-1}f\Vert _{\mathcal {F}L^1(D_{4})}+ \Vert \mathcal {G}_{2,2}e^{-\mathcal {G}_{2,2}t}|\vec {\xi }|^{-1}\widehat{f}\Vert _{L^1(D_4)}, \end{aligned}$$

we can get (4.13)\(_{10}\). Using \(|\xi |\lesssim |\vec {\xi }|^2\), (4.1)\(_4\) for \(k=3\), (4.3)\(_1\) for \(k=3\) and

$$\begin{aligned} \Vert \partial _x\mathcal {R}_1 M_3(\partial ,t)f\Vert _{\mathcal {F}L^1(D_{4})} \lesssim \ \Vert \partial _x\mathcal {R}_1 e^{\frac{1}{2}t\Delta }f\Vert _{\mathcal {F}L^1(D_{4})}+ \Vert \mathcal {G}_{3,3}e^{-\mathcal {G}_{2,2}t}\widehat{f}\Vert _{L^1(D_4)}, \end{aligned}$$

we can get (4.13)\(_{11}\). \(\square \)

Proof of Lemma 4.6

\(\underline{(4.17)_1}\) By Hölder’s inequality, product estimate in one dimension, interpolation inequality and

$$\begin{aligned} \Vert \nabla P_\backsim (\vec {R'}\cdot \vec {b})\Vert _{L^2} \lesssim \ \Vert \vec {b}\Vert _{L^2}\lesssim \ \langle t\rangle ^{-\frac{1}{4}}\Vert V\Vert _3, \end{aligned}$$
(A.1)

we have

$$\begin{aligned}{} & {} \Vert \nabla P_\backsim (\vec {R'}\cdot \vec {b}) b\Vert _{L^1}+\Vert \vec {b}b\Vert _{L^1}\le \ \Vert \vec {b}\Vert _{L^2}\Vert b\Vert _{L^2} \lesssim \ \langle t\rangle ^{-\frac{1}{2}}\Vert V\Vert _3^2, \\{} & {} \Vert |\partial _x|^\beta (bb)\Vert _{L^1_x} \lesssim \ \Vert b\Vert _{L^2_x}\Vert |\partial _x|^\beta b\Vert _{L^2_x} \lesssim \ \Vert b\Vert _{L^2_x}^{2-\beta } \Vert \partial _xb\Vert _{L^2_x}^\beta , \end{aligned}$$

which yields

$$\begin{aligned} \Vert |\partial _x|^\beta (bb)\Vert _{L^1} \lesssim \ \Vert b\Vert _{L^2}^{2-\beta } \Vert \partial _xb\Vert _{L^2}^\beta \lesssim \ \langle t\rangle ^{-\frac{1+\beta }{2}}\Vert V\Vert _3^2. \end{aligned}$$

\(\underline{(4.17)_2}\) Using Hölder’s inequality and \(\partial _y v=-\partial _xu\), we have

$$\begin{aligned} \Vert \partial _yv_{<\langle t\rangle ^{-8}}b\Vert _{L^1} +\Vert \partial _yv_{>2\langle t\rangle ^{-0.05}}b\Vert _{L^1} \lesssim \ \Vert \partial _xu\Vert _{L^2}\Vert b\Vert _{L^2} \lesssim \ \langle t\rangle ^{-\frac{5}{4}}\Vert V\Vert _3^2. \end{aligned}$$

Thanks to \(\Vert \partial _x P_\backsim (\vec {R'}\cdot \vec {b})\Vert _{L^2} \lesssim \ \Vert B\Vert _{L^2}\), we can get

$$\begin{aligned} \Vert \partial _xP_\backsim (\vec {R'}\cdot \vec {b})\partial _yu\Vert _{L^1} \le \ \Vert \partial _xP_\backsim (\vec {R'}\cdot \vec {b})\Vert _{L^2} \Vert \partial _yu\Vert _{L^2} \lesssim \ \Vert B\Vert _{L^2}\Vert \partial _yu\Vert _{L^2} \lesssim \ \langle t\rangle ^{-\frac{5}{4}}\Vert V\Vert _3^2. \end{aligned}$$

\(\underline{(4.17)_3}\) Using product estimate and interpolation inequality, we have

$$\begin{aligned} \Vert |\nabla |^\beta (\vec {u}\otimes \vec {u})\Vert _{L^1} \lesssim \ \Vert \vec {u}\Vert _{L^2}\Vert |\nabla |^\beta \vec {u}\Vert _{L^2} \lesssim \ \Vert \vec {u}\Vert _{L^2}^{2-\beta }\Vert \nabla \vec {u}\Vert _{L^2}^\beta \lesssim \ \langle t\rangle ^{-1-\frac{\beta }{4}}\Vert V\Vert _3^2 \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \Vert |\nabla |^{0.99}(\vec {b}B)\Vert _{L^1} \lesssim&\ \Vert |\nabla |^{0.99}\vec {b}\Vert _{L^2} \Vert B\Vert _{L^2} +\Vert |\nabla |^{0.99} B\Vert _{L^2} \Vert \vec {b}\Vert _{L^2}\\ \lesssim&\ \langle t\rangle ^{-0.21-0.5}\Vert V\Vert _3^2 +\langle t\rangle ^{-0.25-0.6}\Vert V\Vert _3^2\\ \lesssim&\ \langle t\rangle ^{-0.7}\Vert V\Vert _3^2, \end{aligned} \end{aligned}$$

where we have used

$$\begin{aligned} \Vert |\nabla |^{0.99}\vec {b}\Vert _{L^2} \le \ \Vert |\nabla |^{0.99}\vec {b}_{\le \langle t\rangle ^{0.03}}\Vert _{L^2} +\Vert |\nabla |^{0.99}\vec {b}_{>\langle t\rangle ^{0.03}}\Vert _{L^2}\lesssim \langle t\rangle ^{-0.21} \Vert V\Vert _3 \end{aligned}$$

and

$$\begin{aligned} \Vert |\nabla |^{0.99}B\Vert _{L^2} \lesssim \ \Vert B\Vert _{L^2}^{0.01}\Vert \nabla B\Vert _{L^2}^{0.99} \lesssim \ \langle t\rangle ^{-0.6}\Vert V\Vert _3. \end{aligned}$$

This concludes the proof of Lemma 4.6. \(\square \)

Proof of Lemma 4.7

\(\underline{(4.18)_1}\) Using interpolation inequality

$$\begin{aligned} \Vert f\Vert _{L^\frac{2p}{2-p}_x}\lesssim \ \Vert f\Vert _{L^2_x}^\frac{1}{p}\Vert \partial _xf\Vert _{L^2_x}^{1-\frac{1}{p}}, \end{aligned}$$

we obtain

$$\begin{aligned} \begin{aligned} \Vert b\partial _xb\Vert _{L^1_y(L^p_x)} \lesssim&\ \big \Vert \Vert b\Vert _{L^\frac{2p}{2-p}_x}\Vert \partial _xb\Vert _{L^2_x} \big \Vert _{L^1_y} \lesssim \ \big \Vert \Vert b\Vert _{L^2_x}^\frac{1}{p}\Vert \partial _xb\Vert _{L^2_x}^{2-\frac{1}{p}} \big \Vert _{L^1_y}\\ \lesssim&\ \Vert b\Vert _{L^2}^\frac{1}{p} \Vert \partial _xb\Vert _{L^2}^{2-\frac{1}{p}} \lesssim \ \langle t\rangle ^{-\frac{3}{2}+\frac{1}{2p}}\Vert V\Vert _3^2. \end{aligned} \end{aligned}$$

\(\underline{(4.18)_2}\) We only give the estimate of \(\Vert \langle \nabla \rangle ^3(\vec {b}\cdot \nabla u)\Vert _{L^1_x(L^2_y)}\), since other terms can be bounded similarly. Using

$$\begin{aligned} \Vert \langle \nabla \rangle ^k f\Vert _{L^1_x(L^2_y)} \lesssim \ \Vert f\Vert _{L^1_x(L^2_y)} +\Vert \nabla ^k f\Vert _{L^1_x(L^2_y)},\ k\ge 0, \end{aligned}$$
(A.2)

we have

$$\begin{aligned} \begin{aligned}&\Vert \langle \nabla \rangle ^3(\vec {b}\cdot \nabla u)\Vert _{L^1_x(L^2_y)}\\&\quad \lesssim \ \Vert \langle \nabla \rangle ^3(B\partial _y u)\Vert _{L^1_x(L^2_y)} +\Vert \langle \nabla \rangle ^3(b\partial _x u)\Vert _{L^1_x(L^2_y)}\\&\quad \lesssim \ \Vert B\partial _y u\Vert _{L^1_x(L^2_y)} +\Vert B\partial _y \nabla ^3u\Vert _{L^1_x(L^2_y)}+\ other\ similar\ terms. \end{aligned} \end{aligned}$$

By interpolation inequality, we can get

$$\begin{aligned} \Vert B\partial _y u\Vert _{L^1_x(L^2_y)} \lesssim \ \Vert B\Vert _{L^2_x(L^\infty _y)}\Vert u\Vert _{L^2} \lesssim \ \Vert B\Vert _{L^2}^\frac{1}{2} \Vert \partial _xb\Vert _{L^2}^\frac{1}{2}\Vert u\Vert _{L^2} \lesssim \ \langle t\rangle ^{-\frac{9}{8}}\Vert V\Vert _3^2. \end{aligned}$$

Using

$$\begin{aligned} \Vert \nabla \langle \nabla \rangle ^3 u\Vert _{L^2} \le \ \Vert \nabla \langle \nabla \rangle ^3 u_{<\langle t\rangle ^{\frac{3}{28}}}\Vert _{L^2} +\Vert \nabla \langle \nabla \rangle ^3 u_{\ge \langle t\rangle ^{\frac{3}{28}}}\Vert _{L^2} \lesssim \ \langle t\rangle ^{-\frac{3}{7}}\Vert V\Vert _3^2,\nonumber \\ \end{aligned}$$
(A.3)

then

$$\begin{aligned} \begin{aligned} \Vert B\partial _y \nabla ^3u\Vert _{L^1_x(L^2_y)} \lesssim&\ \Vert B\Vert _{L^2_x(L^\infty _y)} \Vert \partial _y \nabla ^3u\Vert _{L^2} \lesssim \ \langle t\rangle ^{-\frac{3}{7}-\frac{5}{8}}\Vert V\Vert _3^2 \lesssim \ \langle t\rangle ^{-1.01}\Vert V\Vert _3^2. \end{aligned} \end{aligned}$$

Thus,

$$\begin{aligned} \Vert \langle \nabla \rangle ^3(\vec {b}\cdot \nabla u)\Vert _{L^1_x(L^2_y)}\lesssim \ \langle t\rangle ^{-1.01}\Vert V\Vert _3^2. \end{aligned}$$

\(\underline{(4.18)_3}\) Use (A.2), we only show the estimates of

$$\begin{aligned} \Vert v_{<\langle t\rangle ^{-8}}\partial _y\nabla ^3b\Vert _{L^1_x(L^2_y)},\ \textrm{and}\ \ \Vert v_{>2\langle t\rangle ^{-0.05}}\partial _y\nabla ^3b\Vert _{L^1_x(L^2_y)}, \end{aligned}$$

and other terms can be bounded similarly. Using Hölder’s inequality and interpolation inequality, one can get

$$\begin{aligned} \begin{aligned} \Vert v_{<\langle t\rangle ^{-8}}\partial _y\nabla ^3b\Vert _{L^1_x(L^2_y)} \lesssim&\ \Vert v_{<\langle t\rangle ^{-8}}\Vert _{L^2_x(L^\infty _y)}\Vert \partial _y\nabla ^3 b\Vert _{L^2}\\ \lesssim&\ \Vert v\Vert _{L^2}^\frac{1}{2}\Vert \partial _yv_{<\langle t\rangle ^{-8}}\Vert _{L^2}^\frac{1}{2} \Vert b\Vert _{H^4}\\ \lesssim&\ \langle t\rangle ^{-2}\Vert V\Vert _3^2,\\ \Vert v_{>2\langle t\rangle ^{-0.05}}\partial _y\nabla ^3b\Vert _{L^1_x(L^2_y)} \lesssim&\ \Vert v_{>2\langle t\rangle ^{-0.05}}\Vert _{L^2_x(L^\infty _y)} \Vert \partial _y\nabla ^3b\Vert _{L^2}\\ \lesssim&\ \Vert v_{>2\langle t\rangle ^{-0.05}}\Vert _{L^2}^\frac{1}{2} \Vert \partial _yv_{>2\langle t\rangle ^{-0.05}}\Vert _{L^2}^\frac{1}{2}\\&\ \times (\Vert \partial _y\nabla ^3b_{<\langle t\rangle ^{0.05}}\Vert _{L^2}+ \Vert \partial _y\nabla ^3b_{\ge \langle t\rangle ^{0.05}}\Vert _{L^2})\\ \lesssim&\ \langle t\rangle ^{0.025}\Vert \nabla v\Vert _{L^2} (\Vert \partial _y\nabla ^3b_{<\langle t\rangle ^{0.05}}\Vert _{L^2}+ \Vert \partial _y\nabla ^3b_{\ge \langle t\rangle ^{0.05}}\Vert _{L^2})\\ \lesssim&\ \langle t\rangle ^{0.025-1}(\langle t\rangle ^{0.2-0.25}+\langle t\rangle ^{-0.2})\Vert V\Vert _3^2\\ \lesssim&\ \langle t\rangle ^{-1.01}\Vert V\Vert _3^2. \end{aligned} \end{aligned}$$

\(\underline{(4.18)_4}\) Using (A.2), we only estimate \(\Vert B\partial _y \nabla ^2b\Vert _{L^1_x(L^2_y)}\), and other terms can be controlled similarly. Using interpolation inequality, and

$$\begin{aligned} \Vert \langle \nabla \rangle ^3b\Vert _{L^2}\lesssim \ \Vert \langle \nabla \rangle ^3b_{<\langle t\rangle ^{\frac{1}{32}}}\Vert _{L^2}+ \Vert \langle \nabla \rangle ^3b_{\ge \langle t\rangle ^{\frac{1}{32}}}\Vert _{L^2} \lesssim \ \langle t\rangle ^{-\frac{5}{32}}\Vert V\Vert _3, \end{aligned}$$
(A.4)

we have

$$\begin{aligned} \Vert B\partial _y \nabla ^2b\Vert _{L^1_x(L^2_y)} \lesssim \ \Vert B\Vert _{L^2_x(L^\infty _y)}\Vert \langle \nabla \rangle ^3b\Vert _{L^2} \lesssim \ \langle t\rangle ^{-\frac{5}{8}-\frac{5}{32}}\Vert V\Vert _3^2 \lesssim \ \langle t\rangle ^{-0.75}\Vert V\Vert _3^2. \end{aligned}$$

\(\underline{(4.18)_5}\) Using (A.2) again, we only bound \(\Vert \partial _x\langle \nabla \rangle ^2P_\backsim u b \Vert _{L^1_x(L^2_y)} \), while other terms can be bounded similarly. Using interpolation inequality, and

$$\begin{aligned} \Vert \partial _x\langle \nabla \rangle ^3 u\Vert _{L^2} \le \ \Vert \partial _x\langle \nabla \rangle ^3 u_{<\langle t\rangle ^{0.2}}\Vert _{L^2} +\Vert \partial _x\langle \nabla \rangle ^3 u_{\ge \langle t\rangle ^{0.2}}\Vert _{L^2} \lesssim \ \langle t\rangle ^{-0.8}\Vert V\Vert _3, \end{aligned}$$

we have

$$\begin{aligned} \begin{aligned} \Vert \partial _x\langle \nabla \rangle ^2P_\backsim u b \Vert _{L^1_x(L^2_y)} \lesssim&\ \Vert \partial _x\langle \nabla \rangle ^2 u\Vert _{L^2_x(L^\infty _y)} \Vert b\Vert _{L^2}\\ \lesssim&\ \Vert \partial _x\langle \nabla \rangle ^3 u\Vert _{L^2} \Vert b\Vert _{L^2}\\ \lesssim&\ \langle t\rangle ^{-1.05}\Vert V\Vert _3^2. \end{aligned} \end{aligned}$$

\(\square \)

Proof of Lemma 4.8

By Hölder’s inequality, and (A.1), it is easy to get the estimate of (4.19)\(_1\) and (4.19)\(_2\). Let us begin with the estimate of (4.19)\(_3\).

\(\underline{(4.19)_3}\) We only give the estimate of \(\Vert \vec {b}\cdot \nabla \vec {b}\Vert _{H^2}\), while one can bound other terms by the similar way. We have

$$\begin{aligned} \Vert \vec {b}\cdot \nabla \vec {b}\Vert _{H^2} \le \ \Vert b\partial _x\nabla ^2b\Vert _{L^2}+\ other\ similar\ terms. \end{aligned}$$

Using

$$\begin{aligned} \Vert \partial _x\nabla ^2b\Vert _{L^2} \lesssim \ \Vert \partial _x\nabla ^2b_{<\langle t\rangle ^{\frac{1}{8}}}\Vert _{L^2} +\Vert \partial _x\nabla ^2b_{\ge \langle t\rangle ^{\frac{1}{8}}}\Vert _{L^2} \lesssim \ \langle t\rangle ^{-\frac{5}{8}}\Vert V\Vert _3^2, \end{aligned}$$
(A.5)

we have

$$\begin{aligned} \Vert b\partial _x\nabla ^2b\Vert _{L^2} \lesssim \ \Vert b\Vert _{L^\infty }\Vert \partial _x\nabla ^2b\Vert _{L^2} \lesssim \ \langle t\rangle ^{-1.1}\Vert V\Vert _3^2. \end{aligned}$$

Thus,

$$\begin{aligned} \Vert \vec {b}\cdot \nabla \vec {b}\Vert _{H^2} \lesssim \ \langle t\rangle ^{-1.1}\Vert V\Vert _3^2. \end{aligned}$$

\(\underline{(4.19)_4}\) Using

$$\begin{aligned} \Vert \partial _xP_\backsim (\vec {R'}\cdot \vec {b})\Vert _{L^\infty }\lesssim \ \Vert \widehat{B}\Vert _{L^1}\lesssim \ \langle t\rangle ^{-1}\Vert V\Vert _3 \end{aligned}$$

and (A.4), one can get

$$\begin{aligned} \Vert \partial _xP_\backsim (\vec {R'}\cdot \vec {b})\partial _yb\Vert _{L^2} \lesssim \ \langle t\rangle ^{-1.1}\Vert V\Vert _3^2. \end{aligned}$$

Then we can get the estimates of other terms by the similar way.

\(\underline{(4.19)_5}\) Here we only bound \(\Vert P_\backsim (\vec {R'}\cdot \vec {b})\partial _x\nabla ^2b\Vert _{L^2}\). Using (A.5), and

$$\begin{aligned} \Vert P_\backsim (\vec {R'}\cdot \vec {b})\Vert _{\mathcal {F}L^1} \lesssim&\ \Vert |\nabla |^{-1}b\Vert _{\mathcal {F}L^1}+\sum _{\langle t\rangle ^{-8}\le M\le 2\langle t\rangle ^{-0.05}} \Vert |\nabla |^{-1}P_M B\Vert _{\mathcal {F}L^1}\nonumber \\ \lesssim&\ \langle t\rangle ^{-0.5}\Vert V\Vert _3+\sum _{\langle t\rangle ^{-8}\le M\le 2\langle t\rangle ^{-0.05}} M^{-1} \Vert P_M B\Vert _{\mathcal {F}L^1}\nonumber \\ \lesssim&\ \langle t\rangle ^{-0.5}\Vert V\Vert _3+\sum _{\langle t\rangle ^{-8}\le M\le 2\langle t\rangle ^{-0.05}} \Vert P_M B\Vert _{ L^2}\nonumber \\ \lesssim&\ \langle t\rangle ^{-0.5}\Vert V\Vert _3+\Vert B\Vert _{L^2}\sum _{\langle t\rangle ^{-8}\le M\le 2\langle t\rangle ^{-0.05}} M^{0.001}M^{-0.001}\nonumber \\ \lesssim&\ \langle t\rangle ^{-0.5}\Vert V\Vert _3+\langle t\rangle ^{0.008-0.5}\Vert V\Vert _3 \lesssim \ \langle t\rangle ^{-0.492}\Vert V\Vert _3. \end{aligned}$$
(A.6)

we have

$$\begin{aligned} \Vert P_\backsim (\vec {R'}\cdot \vec {b})\partial _x\nabla ^2b\Vert _{L^2} \lesssim \Vert P_\backsim (\vec {R'}\cdot \vec {b})\Vert _{\mathcal {F}L^1} \Vert \partial _x\nabla ^2b\Vert _{L^2} \lesssim \ \langle t\rangle ^{-1.1}\Vert V\Vert _3^2. \end{aligned}$$

\(\underline{(4.19)_6}\) Here we only show the estimates of \(\Vert b\partial _x^2\nabla ^2b\Vert _{L^2}\) and \(\Vert P_\backsim (\vec {R'}\cdot \vec {b})\partial _y\nabla ^3u\Vert _{L^2}\). Using

$$\begin{aligned} \Vert \partial _x\langle \nabla \rangle ^3b\Vert _{L^2} \lesssim \ \Vert \partial _x\langle \nabla \rangle ^3b_{<\langle t\rangle ^\frac{1}{8}}\Vert _{L^2} +\Vert \partial _x\langle \nabla \rangle ^3b_{\ge \langle t\rangle ^\frac{1}{8}}\Vert _{L^2} \lesssim \ \langle t\rangle ^{-\frac{1}{2}}\Vert V\Vert _3^2, \end{aligned}$$

we have

$$\begin{aligned} \Vert b\partial _x^2\nabla ^2b\Vert _{L^2} \lesssim \ \Vert b\Vert _{L^\infty }\Vert \partial _x^2\nabla ^2b\Vert _{L^2} \lesssim \ \langle t\rangle ^{-1}\Vert V\Vert _3^2. \end{aligned}$$

Thanks to (A.6) and (A.3), we can get the estimate of \(\Vert P_\backsim (\vec {R'}\cdot \vec {b})\partial _y\nabla ^3u\Vert _{L^2}\) by using Hölder’s inequality.

\(\underline{(4.19)_7}\) By using (A.6) and (A.4), one can easily get this estimate. \(\square \)

Proof of Lemma 4.9

\(\underline{(4.20)_1}\) The first three terms can be bounded easily. By

$$\begin{aligned} \Vert \nabla P_\backsim (\vec {R'}\cdot \vec {b})\Vert _{\mathcal {F}L^1}\lesssim \ \Vert \vec {b}\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-\frac{1}{2}}\Vert V\Vert _3, \end{aligned}$$

we can get

$$\begin{aligned} \Vert [\partial _x(\partial _yP_\backsim (\vec {R'}\cdot \vec {b})b),\nabla P_\backsim (\vec {R'}\cdot \vec {b})u]\Vert _{\mathcal {F}L^1}\lesssim & {} \ \Vert \vec {b}\Vert _{\mathcal {F}L^1}(\Vert \partial _xb\Vert _{\mathcal {F}L^1}+\Vert \widehat{u}\Vert _{L^1})\\\lesssim & {} \ \langle t\rangle ^{-\frac{3}{2}}\Vert V\Vert _3^2. \end{aligned}$$

\(\underline{(4.20)_2}\) Like the previous procedure, it suffices to estimate \(\Vert b\partial _{xx}u\Vert _{\mathcal {F}L^1}\) and \(\Vert \partial _yb\partial _{x}v\Vert _{\mathcal {F}L^1}\). Using

$$\begin{aligned}&\Vert \langle \nabla \rangle \partial _{x}u\Vert _{\mathcal {F}L^1} \le \ \Vert \langle \nabla \rangle \partial _{x}u_{\ge \langle t\rangle ^{0.5}}\Vert _{\mathcal {F}L^1} +\Vert \langle \nabla \rangle \partial _{x}u_{< \langle t\rangle ^{0.5}}\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-0.75}\Vert V\Vert _3,\nonumber \\&\Vert \langle \nabla \rangle b\Vert _{\mathcal {F}L^1}\le \ \Vert \langle \nabla \rangle b_{<\langle t\rangle ^{\frac{5}{69}}}\Vert _{\mathcal {F}L^1}+\Vert \langle \nabla \rangle b_{\ge \langle t\rangle ^\frac{5}{69}}\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-0.42}\Vert V\Vert _3,\nonumber \\&\Vert \partial _xv\Vert _{\mathcal {F}L^1} \lesssim \ \Vert \partial _xv_{<\langle t\rangle ^{0.15}}\Vert _{\mathcal {F}L^1}+\Vert \partial _xv_{\ge \langle t\rangle ^{0.15}}\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-0.85}\Vert V\Vert _3, \end{aligned}$$
(A.7)

one gets

$$\begin{aligned} \Vert b\partial _{xx}u\Vert _{\mathcal {F}L^1} \lesssim \ \Vert \widehat{b}\Vert _{L^1}\Vert \partial _{xx}u\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-\frac{5}{4}}\Vert V\Vert _3^2 \end{aligned}$$

and

$$\begin{aligned} \Vert \partial _yb\partial _xv\Vert _{\mathcal {F}L^1} \lesssim \ \Vert \partial _yb\Vert _{\mathcal {F}L^1}\Vert \partial _x v\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-\frac{5}{4}}\Vert V\Vert _3^2. \end{aligned}$$

\(\underline{(4.20)_3}\) Using (A.6) and the fact that \(P_\thickapprox \) can be bounded by the process dealing with \(P_\thicksim \), we can get the desired estimate by Hölder’s inequality.

\(\underline{(4.20)_4}\) Here we only show the estimate of \(\Vert P_\backsim (\vec {R'}\cdot \vec {b})\partial _y\nabla ^2u\Vert _{\mathcal {F}L^1}\). Using

$$\begin{aligned} \Vert \langle \nabla \rangle ^3u\Vert _{\mathcal {F}L^1} \lesssim \ \Vert \langle \nabla \rangle ^3u_{<\langle t\rangle ^\frac{10}{69}}\Vert _{\mathcal {F}L^1} +\Vert \langle \nabla \rangle ^3u_{\ge \langle t\rangle ^\frac{10}{69}}\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-\frac{39}{69}}\Vert V\Vert _3 \end{aligned}$$

and (A.6), we have

$$\begin{aligned} \Vert P_\backsim (\vec {R'}\cdot \vec {b})\partial _y\nabla ^2u\Vert _{\mathcal {F}L^1} \lesssim \ \Vert P_\backsim (\vec {R'}\cdot \vec {b})\Vert _{\mathcal {F}L^1} \Vert \partial _y\nabla ^2u\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-1.01}\Vert V\Vert _3^2. \end{aligned}$$

\(\underline{(4.20)_5}\) We only give the estimate of \(\Vert \partial _x(b\partial _xb)\Vert _{\mathcal {F}L^1}\). Using

$$\begin{aligned} \Vert \partial _x^2b\Vert _{\mathcal {F}L^1} \le \ \Vert \partial _x^2b_{<\langle t\rangle ^\frac{10}{59}}\Vert _{\mathcal {F}L^1} +\Vert \partial _x^2b_{\ge \langle t\rangle ^\frac{10}{59}}\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-0.83}\Vert V\Vert _3, \end{aligned}$$

we have

$$\begin{aligned} \Vert \partial _x(b\partial _xb)\Vert _{\mathcal {F}L^1} \le \ \Vert \partial _xb\partial _xb\Vert _{\mathcal {F}L^1}+\Vert b\partial _x^2b\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-1.3}\Vert V\Vert _3^2. \end{aligned}$$

\(\underline{(4.20)_6}\) Using the same way yielding (A.7)\(_3\), we can get

$$\begin{aligned} \Vert \nabla B\Vert _{\mathcal {F}L^1}\lesssim \ \langle t\rangle ^{-0.85}\Vert V\Vert _3, \end{aligned}$$

which, together with (A.7)\(_2\) yields

$$\begin{aligned} \Vert \nabla (B\vec {b})\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-1.2}\Vert V\Vert _3^2. \end{aligned}$$

Other terms can be bounded similarly.

\(\underline{(4.20)_7}\) We only estimate \(\Vert \nabla ^2 B\partial _y b\Vert _{\mathcal {F}L^1}\), while other terms can be bounded similarly. Using the same way yielding (A.7)\(_3\), one has

$$\begin{aligned} \Vert \nabla ^2 B\Vert _{\mathcal {F}L^1}\lesssim \ \langle t\rangle ^{-0.71}\Vert V\Vert _3, \end{aligned}$$

which, with (A.7)\(_2\) leads

$$\begin{aligned} \Vert \nabla ^2 B\partial _y b\Vert _{\mathcal {F}L^1} \lesssim \ \Vert \nabla ^2 B\Vert _{\mathcal {F}L^1} \Vert \partial _y b\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-1.1}\Vert V\Vert _3^2. \end{aligned}$$

Using (A.7)\(_2\) and (A.6), we have

$$\begin{aligned} \Vert P_\backsim (\vec {R'}\cdot \vec {b})\partial _yb\Vert _{\mathcal {F}L^1} \lesssim \ \Vert P_\backsim (\vec {R'}\cdot \vec {b})\Vert _{\mathcal {F}L^1} \Vert \partial _yb\Vert _{\mathcal {F}L^1} \lesssim \ \langle t\rangle ^{-0.9}\Vert V\Vert _3^2. \end{aligned}$$

\(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, R. On the Temporal Decay for the 2D Non-resistive Incompressible MHD Equations. Ann. Henri Poincaré 24, 2005–2065 (2023). https://doi.org/10.1007/s00023-023-01268-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-023-01268-3

Mathematics Subject Classification

Navigation