Skip to main content
Log in

Lifshitz Tails for Random Diagonal Perturbations of Laurent Matrices

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study the integrated density of states of one-dimensional random operators acting on \(\ell ^2({\mathbb {Z}})\) of the form \(T + V_\omega \) where T is a Laurent (also called bi-infinite Toeplitz) matrix and \(V_\omega \) is an Anderson potential generated by i.i.d. random variables. We assume that the operator T is associated with a bounded, Hölder-continuous symbol f, that attains its minimum at a finite number of points. We allow for f to attain its minima algebraically. The resulting operator T is long-range with weak (algebraic) off-diagonal decay. We prove that this operator exhibits Lifshitz tails at the lower edge of the spectrum with an exponent given by the integrated density of states of T at the lower spectral edge. The proof relies on generalizations of Dirichlet–Neumann bracketing to the long-range setting and an adaption of Temple’s inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aizenman, M., Warzel, S.: Random operators: disorder effects on quantum spectra and dynamics. Graduate Studies in Mathematics, vol. 168. Amer. Math. Soc, Providence, RI (2015)

  2. Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)

    Google Scholar 

  3. Ciaurri, O., Roncal, L., Stinga, P.R., Torrea, J.L., Varona, J.L.: Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications. Adv. Math. 330, 688–738 (2018)

    Article  MathSciNet  Google Scholar 

  4. Garofalo, N.: Fractional thoughts. In: New Developments in the Analysis of Nonlocal Operators, Contemp. Math., vol. 723, Amer. Math. Soc., Providence, RI, pp. 1–135 (2019)

  5. Gebert M.:, Dirichlet–Neumann bracketing for a class of banded Toeplitz matrices, Proc. Am. Math. Soc. 250, 105–117 (2022)

  6. Gebert, M., Rojas-Molina, C.: Lifshitz tails for the fractional Anderson model. J. Stat. Phys. 179, 341–353 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ismail, M.E.H., Zhang, R.: On the Hellmann–Feynman theorem and the variation of zeros of certain special functions. Adv. Appl. Math. 9, 439–446 (1988)

    Article  MathSciNet  Google Scholar 

  8. Kaleta, K., Pietruska-Paluba, K.: Lifschitz tail for alloy-type models driven by the fractional Laplacian. J. Funct. Anal. 279, 108575 (2020)

    Article  MathSciNet  Google Scholar 

  9. Kaleta, K., Pietruska-Paluba, K.: Lifshitz tail for continuous Anderson models driven by Levy operators. Commun. Contemp. Math. 23, 2050065 (2020)

    Article  Google Scholar 

  10. Kirsch, W.: An invitation to random Schrödinger operators. Panoram. Synth. 25, 1–119 (2008)

    MATH  Google Scholar 

  11. Klopp, F.: Band edge behaviour for the integrated density of states of random Jacobi matrices in dimension 1. J. Stat. Phys. 90, 927–947 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Michelitsch, T.M., Collet, B.A., Riascos, A.P., Nowakowski, A.F., Nicolleau, F.C.G.A.: Fractional random walk lattice dynamics. J. Phys. A 50, 055003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Padgett, J.L., Kostadinova, E.G., Liaw, C.D., Busse, K., Matthews, L.S., Hyde, T.W.: Anomalous diffusion in one-dimensional disordered systems: a discrete fractional Laplacian method. J. Phys A: Math. Theor. 53(13)

  14. Pastur, L.A., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992)

    Book  Google Scholar 

  15. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  16. Riascos, A.P., Michelitsch, T.M., Collet, B.A., Nowakowski, A.F., Nicolleau, F.C.G.A.: Random walks with long-range steps generated by functions of Laplacian matrices. J. Stat. Mech. Theory Exp. 2018, 043404 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

CRM acknowledges the Agence Nationale de la Recherche for their financial support via ANR grant RAW ANR-20-CE40-0012-01. MG thanks Peter Müller and Jacob Shapiro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gebert.

Additional information

Communicated by Anton Bovier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 A.1 Off-Diagonal Decay of Laurent Matrices

Lemma A.1

Let \(T_f\) be Laurent operator associated with a symbol f satisfying Assumptions (A1)–(A2). The matrix entries of \(T_f\) decay as

$$\begin{aligned} |{a_{n-m}}|\leqslant \frac{1}{|{n - m}|^{1+\nu }}, \quad m, n \in {\mathbb {Z}} \end{aligned}$$

and therefore, \(T_f\) is an, at most, long-range operator with polynomially decaying off-diagonal terms.

Proof

To see this, note that \(f\in C^{1}({\mathbb {T}})\) except at finitely many points \(x_j\in {\mathbb {T}}\), \(j=1,..,m\) for some \(m\in {\mathbb {N}}\) where f remains \(\nu \)-Hölder continuous for some \(\nu >0\) at these points. An adaption of the proof of [6, Thm. 2.2] implies for symbols \(h\in C^1({\mathbb {T}}) {\setminus }\{y\}\cap C^{\alpha }({\mathbb {T}})\) that

$$\begin{aligned} |T_h(n,m)|\leqslant \frac{C}{|n-m|^{1+\nu }}, \quad n,m\in {\mathbb {Z}}\end{aligned}$$
(A.1)

for some \(C>0\). We write \(g = \sum _{j=1}^m h_j\) with \(h_j \in C^1({\mathbb {T}}){\setminus }\{x_j\} \cap C^\alpha ({\mathbb {T}})\). Now, we apply inequality (A.1) to each function \(h_j\) and since there is only a finite number of those we end up with the result. \(\square \)

Proposition A.2

Let \(T_f\) be the Laurent operator associated with a symbol f satisfying Assumptions (A1)–(A2). The limit

$$\begin{aligned} \widetilde{I}_f(E):=\lim _{L\rightarrow \infty } \frac{{{\,\mathrm{Tr}\,}}\big ( 1_{[-L,L]} 1_{\leqslant E} (T_{f}) \big )}{2L+1} \end{aligned}$$
(A.2)

exists and equals the IDS of \(T_f\), \(I_f(E)\), for all \(E\in {\mathbb {R}}\), where \(I_f\) is defined in (2.8). Moreover,

$$\begin{aligned} I_f(E)= \frac{1}{2\pi }\big | \big \{ k\in [-\pi ,\pi ]: \ f(k) \leqslant E\big \}\big |, \end{aligned}$$
(A.3)

Proof

Using the off-diagonal decay of \(T_f\) shown above, we can follow the arguments in [6, Proposition 2.1] to show that \(\widetilde{I}_f\) and \(I_f\) are identical for all \(E\in {\mathbb {R}}\).

Next, let \(\tau _x:\ell ^2({\mathbb {Z}})\rightarrow \ell ^2({\mathbb {Z}})\) be the translation by \(x\in {\mathbb {Z}}\) acting on \(\ell ^2({\mathbb {Z}})\) by \(\tau _x \varphi (n)=\varphi (n-x)\), for \(\varphi \in \ell ^2({\mathbb {Z}})\). The translation invariance of \(T_f\) implies that

$$\begin{aligned} \lim _{L\rightarrow \infty } \frac{{{\,\mathrm{Tr}\,}}\big ( 1_{[-L,L]} 1_{\leqslant E} (T_{f}) \big )}{2L+1}\!=\!\frac{1}{2L+1} \sum _{x\in [-L,L]}\langle {\delta _x,1_{\leqslant E} (T_{f})\delta _x}\rangle \!=\! \langle \delta _0, 1_{\leqslant E} (T_{f})\delta _0 \rangle \end{aligned}$$
(A.4)

Using Fourier transform in the r.h.s. of the last line and the fact that \(T_f\) is unitary equivalent to the operator \(M_f\), multiplication by f, yields (A.3). \(\square \)

1.2 A.2 Properties of the Ground-State Space \({\mathcal {G}}\) of Neumann Restrictions of Toeplitz Matrices

Let T be a Laurent matrix with bandwidth N associated with a symbol g of the form (4.3). Consider its restriction to the cube \(\Lambda _L=[-L,L]\cap {\mathbb {Z}}\), with \(L\in {\mathbb {N}}\), \(L>2N+1\) with modified Neumann boundary conditions (see Sect. 3), denoted by \(T_L^{{\mathcal {N}}}\). We define its ground-state space by

$$\begin{aligned} {\mathcal {G}}:=\big \{\varphi \in \ell ^2(\Lambda _L): T_L^{{\mathcal {N}}}\varphi = 0\big \} \end{aligned}$$
(A.5)

We recall from [5, Section 5] (see Sect. 3) that the ground-state space \({\mathcal {G}}\) is spanned by

$$\begin{aligned} {\mathcal {G}} = \text {span} \big \{\varphi ^j_{k,L} \in \ell ^2(\Lambda _L):\ k=1,\ldots ,M,\,\,j=0,\ldots , \overline{\alpha }-1 \big \} \end{aligned}$$
(A.6)

with

$$\begin{aligned} \varphi ^j_{k,L} := \frac{1}{K_{j,L}^{1/2}} \big ( (-L)^j e^{i L E_k },\ldots ,0^j,1^j e^{-i E_k},\ldots , L^je^{-i L E_k}\big )^T\in {\mathbb {R}}^{2L+1} \end{aligned}$$
(A.7)

for \(k=1,\ldots ,M\) and \(j=0,\ldots ,\overline{\alpha }-1\), and

$$\begin{aligned} K_{j,L} = 2\sum _{m=-L}^L |m|^{2j}. \end{aligned}$$
(A.8)

Lemma A.3

Let \(\varphi \in {\mathcal {G}}\). Then, there exists a constant \(C>0\) such that for all \(L\in {\mathbb {N}}\), \(r\ne k\) and \(j,s\in \{0,\ldots ,\overline{\alpha }\}\)

$$\begin{aligned} |\langle \varphi _{k,L}^j,\varphi _{r,L}^s\rangle | \leqslant \frac{C}{|\Lambda _L|}. \end{aligned}$$
(A.9)

Proof

We compute

$$\begin{aligned} |\langle \varphi _{k,L}^j,\varphi _{r,L}^s\rangle | = \frac{1}{(K_{j,L}K_{s,L})^{1/2}}\Big | \sum _{m=-L}^L m^{j+s} e^{i m (E_k - E_r)}\Big | \end{aligned}$$
(A.10)

Using summation by parts \(j+s\) times and \(|\sum _{m=-L}^L e^{i m (E_k - E_r)}| = O(1)\), we obtain that

$$\begin{aligned} \Big |\sum _{m=-L}^L m^{j+s} e^{i m (E_k - E_r)}\Big | = O(L^{j+s}). \end{aligned}$$
(A.11)

Now, \(K_{j,L}K_{s,L} = O(L^{2j+2s+2})\) implies

$$\begin{aligned} |\langle \varphi _{k,L}^j,\varphi _{r,L}^s\rangle | = O(L^{-1}) \end{aligned}$$
(A.12)

and therefore there exists a constant \(C_{k,j,r,s}\) depending on kjrs but independent of L such that

$$\begin{aligned} |\langle \varphi _{k,L}^j,\varphi _{r,L}^s\rangle | \leqslant \frac{C_{k,j,r,s}}{L}. \end{aligned}$$
(A.13)

Taking \(C:=\displaystyle \max _{j,s,r\ne k} C_{k,j,r,s}\) gives the assertion. \(\square \)

Lemma A.4

There exists \(L_0\) such that for all \(L\geqslant L_0\), \(l\in \Lambda _L\) and \(\varphi \in {\mathcal {G}}\)

$$\begin{aligned} |\varphi (l)| \leqslant \frac{\sqrt{2N}}{\sqrt{|\Lambda _L|}}. \end{aligned}$$
(A.14)

Proof

Let \(\varphi \in {\mathcal {G}} \) with \(\Vert \varphi \Vert =1\). Then, \( \varphi =\displaystyle \sum _{k=0}^{n-1}\sum _{j=0}^{\overline{\alpha } - 1} a_{j,k} \varphi _{k,L}^j \) for some \(a_{j,k}\in {\mathbb {C}}\) and \(\varphi _{k,L}^j\) given in (A.7). We compute

$$\begin{aligned} \langle \varphi ,\widetilde{V}_\omega \varphi \rangle = \sum _{l\in \Lambda _L} \tilde{V}_\omega (l) |\varphi (l)|^2 \end{aligned}$$
(A.15)

where \(\varphi (l)\) stands for the lth component of the vector \(\varphi \). The last lemma implies that \(|\langle \varphi _{k,L}^j,\varphi _{r,L}^s\rangle | \leqslant \frac{C}{|\Lambda _L|}\) for some constant \(C>0\) and all \(k\ne r\). Hence, we obtain

$$\begin{aligned} 1&= \sum _{l\in \Lambda _L}|\varphi (l)|^2 = \sum _{k,r=0}^{n-1}\sum _{j,s=0}^{\overline{\alpha } - 1} \overline{a}_{k,j} a_{r,s} \langle \varphi _{k,L}^j, \varphi _{r,L}^s\rangle \nonumber \\&\geqslant \sum _{k=0}^{n-1}\sum _{j=0}^{\overline{\alpha } - 1} |a_{k,j}|^2 - \sum _{(k,j)\ne (r,s)} |a_{k,j}||a_{r,s}| \frac{C}{|\Lambda _L|} \nonumber \\&\geqslant \sum _{k=0}^{n-1}\sum _{j=0}^{\overline{\alpha } - 1} |a_{k,j}|^2 - \frac{1}{2}\sum _{(k,j)\ne (r,s) } \big (|a_{k,j}|^2 + |a_{r,s}|^2 \big ) \frac{C}{|\Lambda _L|} \nonumber \\&\geqslant \sum _{k=0}^{n-1}\sum _{j=0}^{\overline{\alpha } - 1} |a_{k,j}|^2 \Big ( 1- \frac{C N}{|\Lambda _L|}\Big ) \end{aligned}$$
(A.16)

where we used the inequality \(|xy|\leqslant \frac{1}{2}(|x|^2 + |y|^2)\) for \(x,y\in {\mathbb {R}}\). We choose \(L_0\in {\mathbb {N}}\) such that for all \(L\geqslant L_0\) we obtain \(\frac{C N}{|\Lambda _L|}\leqslant \frac{1}{2}\) and therefore

$$\begin{aligned} \sum _{k=0}^{n-1}\sum _{j=0}^{\overline{\alpha } - 1} |a_{k,j}|^2 \leqslant 2. \end{aligned}$$
(A.17)

This implies

$$\begin{aligned} |\varphi (l)| \leqslant \frac{1}{\sqrt{|\Lambda _L|}} \sum _{k=0}^{n-1}\sum _{j=0}^{\overline{\alpha } - 1} |a_{k,j}| \leqslant \frac{\sqrt{N}}{\sqrt{|\Lambda _L|}} \big (\sum _{k=0}^{n-1}\sum _{j=0}^{\overline{\alpha } - 1} |a_{k,j}|\big )^{1/2} \leqslant \frac{\sqrt{2N}}{\sqrt{|\Lambda _L|}}. \end{aligned}$$
(A.18)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebert, M., Rojas-Molina, C. Lifshitz Tails for Random Diagonal Perturbations of Laurent Matrices. Ann. Henri Poincaré 23, 4149–4170 (2022). https://doi.org/10.1007/s00023-022-01178-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01178-w

Navigation