Skip to main content
Log in

On the Scattering of Waves inside Charged Spherically Symmetric Black Holes

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper, we show that there is a breakdown of scattering between the event horizon (or the Cauchy horizon) and an intermediate Cauchy hypersurface in the dynamic interior of a Reissner–Nordström-like black hole. More precisely, we show that the trace operators and their analytic counterparts, the inverse wave operators, do not have bounded inverses, even though these operators themselves are bounded. This result holds for the natural energy given by the energy–momentum tensor of the wave equation using the timelike vector field of the Regge–Wheeler variable, which asymptotically becomes normal to the horizons. The behaviour of solutions at low spatial frequencies and their behaviour at high angular momenta are the only obstructions causing this breakdown of scattering. The breakdown follows from an analysis of a \(1+1\)-dimensional wave equation with exponentially decaying potential which we treat for general potentials, and we show that the breakdown is generic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Thus, the boundedness of the scattering operator from the horizon to the horizon is not easily provable via the method of “concatenating” intermediate operators, as is usually done in the exterior.

  2. This vector field is timelike in the interior of the black hole and asymptotically becomes normal to the horizons.

  3. E.g. scalar waves. We also expect electromagnetic fields to exhibit similar behaviours to scalar waves.

  4. See, e.g. [12].

  5. A causal vector is future-oriented if its inner product with the vector field defining the time-orientation is positive.

  6. \(\Re (z)\) and \(\Im (z)\) are, respectively, the real and the imaginary parts of a complex number z.

  7. The assumption that \(\varphi \) is even was added for convenience so that its Fourier transform becomes real, but this is not indispensable.

References

  1. Besset, N.: Scattering theory for the charged Klein–Gordon equation in the exterior De Sitter–Reissner–Nordström spacetime. J. Geometric Anal. 31(11), 10521–10585 (2021)

    Article  MathSciNet  Google Scholar 

  2. Bony, J.-F., et al.: Scattering theory for the Schrödinger equation with repulsive potential. Journal de Mathématiques Pures et Appliquées 84(5), 509–579 (2005)

    Article  MathSciNet  Google Scholar 

  3. Borthwick, J.: Conformal scattering and the Goursat problem for Dirac fields in the interior of charged spherically symmetric black holes. Rev. Math. Phys. 33, 2150037 (2021). https://doi.org/10.1142/S0129055X21500379

  4. Chandrasekhar, S., Hartle, J.B.: On crossing the Cauchy horizon of a Reissner–Nordström blackhole. Proc. R. Soc. Lond. A Math. Phys. Sci. 384(1787), 301–315 (1982)

    ADS  MATH  Google Scholar 

  5. Costa, J.L., Franzen, A.T.: Bounded EnergyWaves on the Black Hole Interior of Reissner–Nordström-de Sitter. Ann. Henri Poincaré 18(10), 3371–3398 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: A scattering theory for the wave equation on Kerr black hole exteriors. Annales scientifiques de l’École normale supérieure 51(2), 371–486 (2018)

  7. Daudé, T., Nicoleau, F.: Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr–Newman–de Sitter black holes. Vol. 247. Memoirs of the American Mathematical Society. American Mathematical Society (2017)

  8. Franzen, A.T.: Boundedness of massless scalar waves on Reissner–Nordström interior backgrounds. Commun. Math. Phys. 343(2), 601–650 (2016)

    Article  ADS  Google Scholar 

  9. Franzen, A.T.: Boundedness of massless scalar waves on Kerr interior backgrounds. Ann. Henri Poincaré 21(4), 1045–1111 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Georgescu, V., Gérard, C., Häfner, D.: Asymptotic completeness for superradiant Klein-Gordon equations and applications to the De Sitter Kerr metric. J. Eur. Math. Soc. 19(8), 2371–2444 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gérard, C., Nier, F.: Scattering theory for the perturbations of periodic Schrödinger operators. J. Math. Kyoto Univ. 38(4), 595–634 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  13. Häfner, D.: Sur la théorie de la diffusion pour l’équation de Klein-Gordon dans la métrique de Kerr. fr. Polska Akademia Nauk, Instytut Matematyczny (2003)

  14. Häfner, D., Mokdad, M., Nicolas, J.-P.: Scattering theory for Dirac fields inside a Reissner–Nordströmtype black hole. J. Math. Phys. 62(8), 081503 (2021)

    Article  ADS  Google Scholar 

  15. Häfner, D., Nicolas, J.-P.: Scattering of massless Dirac fields by a Kerr black hole. Rev. Math. Phys. 16(01), 29–123 (2004)

    Article  MathSciNet  Google Scholar 

  16. Kehle, C., Shlapentokh-Rothman, Y.: A scattering theory for linear waves on the interior of Reissner–Nordström black holes. Ann. Henri Poincaré 20(5), 1583–1650 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Leray, J.: Hyperbolic differential equations. Institute for Advanced Study (1955)

  18. Mason, L.J., Nicolas, J.-P.: Conformal scattering and the Goursat problem. J. Hyperbolic Differ. Equ. 01(02), 197–233 (2004)

    Article  MathSciNet  Google Scholar 

  19. Mokdad, M.: Maxwell Field on the Reissner-Nordstrøm-de Sitter Manifold: Decay and Conformal Scattering. English. Theses.fr ; sudoc.abes.fr ; tel.archives-ouvertes.fr. Phd Thesis. Brest-France: Université de Bretagne occidentale - Brest (2016)

  20. Mokdad, M.: Reissner–Nordstrøm–de Sitter manifold: photon sphere and maximal analytic extension. Class. Quantum Gravity 34(17), 175014 (2017). arXiv:1701.06982

    Article  ADS  MathSciNet  Google Scholar 

  21. Mokdad, M.: Conformal scattering and the Goursat problem for Dirac fields in the interior of charged spherically symmetric black holes. Rev. Math. Phys. 34(1), 2150037 (2022). https://doi.org/10.1142/S0129055X21500379

  22. Nicolas, J.-P.: Conformal scattering on the Schwarzschild metric. Annales de l’institut Fourier 66(3), 1175–1216 (2016)

  23. Parra, D., Richard, S.: Spectral and scattering theory for Schrödinger operators on perturbed topological crystals. Rev. Math. Phys. 30(4), 1850009 (2018)

    Article  MathSciNet  Google Scholar 

  24. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I, II, III, IV, 2nd edn. Academic Press, New York (1972)

    Google Scholar 

  25. Sbierski, J.: Instability of the Kerr Cauchy horizon under linearised gravitational perturbations. arXiv:2201.12295 [gr-qc, physics:math-ph] (2022)

  26. Simpson, M., Penrose, R.: Internal instability in a Reissner–Nordstrom black hole. Int. J. Theor. Phys. 7, 183–197 (1973)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank D. Häfner and J.-P. Nicolas for previous valuable discussions on the subject. On behalf of M. Mokdad, the IMB receives support from the EIPHI Graduate School (contract ANR-17-EURE-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokdad Mokdad.

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokdad, M., Nasser, R. On the Scattering of Waves inside Charged Spherically Symmetric Black Holes. Ann. Henri Poincaré 23, 3191–3220 (2022). https://doi.org/10.1007/s00023-022-01176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01176-y

Mathematics Subject Classification

Navigation