Skip to main content
Log in

Future Stability of the FLRW Spacetime for a Large Class of Perfect Fluids

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We establish the future nonlinear stability of Friedmann–Lemaître–Robertson–Walker (FLRW) solutions to the Einstein–Euler equations of the universe filled with a large class of perfect fluids (the equations of state are allowed to be certain nonlinear or linear types both). Several previous results as specific examples can be covered in the results of this article. We emphasize that the future stability of FLRW metric for polytropic fluids with positive cosmological constant has been a difficult problem and cannot be directly generalized from the previous known results. Our result in this article has not only covered this difficult case for the polytropic fluids, but also unified more types of fluids in a same scheme of proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note the following identity implies

    $$\begin{aligned} \frac{\mathrm{d}t}{\mathrm{d}\tau }=-\frac{1}{\tau \omega (\tau )}. \end{aligned}$$
  2. In [21], the authors studied the Einstein equation

    figure a

    with Chaplygin equation of state

    figure b

    where \(\tilde{\rho }-\Lambda \ge 0\). It is easy to check that equation (1.1) is equivalent to (1.20) if we use the function transformation \(\tilde{\rho }=\rho +\Lambda \) and \(A=\Lambda ^{1+\vartheta }\).

  3. This constant \(\sigma \) can be considered small eventually from the proof of this Theorem.

  4. Let \(\epsilon =v_T/c \equiv 1\) . For more details please refer to [25, 26].

  5. A minor revision and improvement about the condition (VII) has been included in arXiv:1505.00857v4 and only (A.7) is necessary for our case. An alternative expression of this condition is given in [25, 26].

  6. This variation of the original condition (v) and (B.3) in [37] facilitates the examinations of the conditions of this theorem, and the proof is easy to be recovered by minor corrections. Note that the \(\tau \)-singular terms caused by \(\tilde{B}^0 (t,u)\) and \(\tilde{\mathbf {B}} (t,u)\) can be absorbed into the principle singular term with the good sign. We give a Remark 5.5 on the key revisions in the proof. See the proof in [37] or more details in [26, §5] involving such variations.

References

  1. Andersson, L., Rendall, A.D.: Quiescent cosmological singularities. Commun. Math. Phys. 218(3), 479–511 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342(1), 155–228 (2012)

    Article  ADS  MATH  Google Scholar 

  3. Hachemi, B.: Benaoum, Modified chaplygin gas cosmology. Adv. High Energy Phys. 2012, 1–12 (2012)

    Google Scholar 

  4. Bento, M.C., Bertolami, O., Sen, A.A.: Letter: Generalized chaplygin gas model: Dark energy-dark matter unification and CMBR constraints. General Relativ Gravit 35(11), 2063–2069 (2003)

    Article  ADS  MATH  Google Scholar 

  5. Beyer, F., Oliynyk, T.A., Arturo Olvera-Santamaría, J.: The fuchsian approach to global existence for hyperbolic equations, Accepted for publication in Communications in Partial Differential Equations. arXiv:1907.04071

  6. Brauer, U., Karp, L.: Local existence of solutions of self gravitating relativistic perfect fluids. Commun. Math. Phys. 325, 105–141 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Brauer, U., Rendall, A., Reula, O.: The cosmic no-hair theorem and the non-linear stability of homogeneous Newtonian cosmological models. Class. Quantum Gravity 11, 2283 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  9. Dafermos, M., Holzegel, G.: Dynamic instability of solitons in 4+1 dimensional gravity with negative cosmological constant, https://www.dpmms.cam.ac.uk/~md384/ADSinstability.pdf (2006)

  10. Debnath, U., Banerjee, A., Chakraborty, S.: Role of modified chaplygin gas in accelerated universe. Class. Quantum Gravity 21, 5609–5617 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Friedrich, H.: On the existence of \(n\)-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107, 587–609 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Friedrich, H.: On the global existence and the asymptotic behavior of solutions to the Einstein–Maxwell–Yang–Mills equations. J. Differ. Geom. 34, 275–345 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Friedrich, H.: Einstein equations and conformal structure: Existence of anti-de sitter-type space-times. J. Geom. Phys. 17(2), 125–184 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Friedrich, H., Rendall, A.: The Cauchy Problem for the Einstein Equations, pp. 127–223. Springer, Berlin Heidelberg, Berlin (2000)

    MATH  Google Scholar 

  15. Hadžić, M., Speck, J.: The global future stability of the FLRW solutions to the dust-Einstein system with a positive cosmological constant. J. Hyperb. Differ. Equ. 12, 87–188 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heydari-Fard, M., Sepangi, H.R.: Generalized chaplygin gas as geometrical dark energy. Phys. Rev. D 76(10), 104009 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Holzegel, G.: Well-posedness for the massive wave equation on asymptotically anti-de sitter spacetimes. J. Hyperb. Differ. Equ. 09(02), 239–261 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Holzegel, G., Smulevici, J.: Self-gravitating klein–gordon fields in asymptotically anti-de-sitter spacetimes. Ann. Henri Poincaré 13(4), 991–1038 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kahya, E.O., Pourhassan, B.: The universe dominated by the extended chaplygin gas. Modern Phys. Lett. A 30(13), 1550070 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kamenshchik, A., Moschella, U., Pasquier, V.: Chaplygin-like gas and branes in black hole bulks. Phys. Lett. B 487(1–2), 7–13 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. LeFloch, P.G., Wei, C.: Nonlinear stability of self-gravitating irrotational chaplygin fluids in a flrw geometry. Annales de l’Institut Henri Poincaré C, Analyse non linéaire (2020). https://doi.org/10.1016/j.anihpc.2020.09.005

  22. Lindblad, H., Rodnianski, I.: Global existence for the einstein vacuum equations in wave coordinates. Commun. Math. Phys. 256(1), 43–110 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lindblad, H., Rodnianski, I.: The global stability of minkowski space-time in harmonic gauge. Ann. Math. 171(3), 1401–1477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, C.: Cosmological newtonian limits on large scales, Ph.D. thesis, Monash University (2018)

  25. Liu, C., Oliynyk, T.A.: Cosmological newtonian limits on large spacetime scales. Commun. Math. Phys. 364(3), 1195–1304 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Liu, C., Oliynyk, T.A.: Newtonian limits of isolated cosmological systems on long time scales. Ann. Henri Poincaré 19(7), 2157–2243 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Lottermoser, M.: A convergent post-Newtonian approximation for the constraint equations in general relativity. Ann. de l’I.H.P. Phys. Théorique 57, 279–317 (1992)

    MathSciNet  MATH  Google Scholar 

  28. Lübbe, C., Kroon, J.A.V.: A conformal approach for the analysis of the non-linear stability of radiation cosmologies. Ann. Phys. 328, 1–25 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Mathematical Sciences, vol. 53, pp. 30–51. Springer, New York (2012)

    Book  Google Scholar 

  30. Makino, T.: On a local existence theorem for the evolution equation of gaseous stars. In: Nishida, T., et al. (eds.) Pattern and Waves—Qualitative Analysis of Nonlinear Partial Differential Equations, pp. 459–479. Elsevier, Kinokuniya/North-Holland, Tokyo/Amsterdam (1986)

    Chapter  Google Scholar 

  31. Moschidis, G.: A proof of the instability of ads for the einstein–null dust system with an inner mirror, Ph.D. thesis, Princeton University (2018)

  32. Oliynyk, T.A.: Future global stability for relativistic perfect fluids with linear equations of state \(p=k \rho \) where \(1/3<k<1/2\), arXiv:2002.12526

  33. Oliynyk, T.A.: The Newtonian limit for perfect fluids. Commun. Math. Phys. 276, 131–188 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Oliynyk, T.A.: Cosmological post-Newtonian expansions to arbitrary order. Commun. Math. Phys. 295, 431–463 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Oliynyk, T.A.: A rigorous formulation of the cosmological Newtonian limit without averaging. J. Hyperb. Differ. Equ. 7, 405–431 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Oliynyk, T.A.: The Newtonian limit on cosmological scales. Commun. Math. Phys. 339, 455–512 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Oliynyk, T.A.: Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant. Commun. Math. Phys. 346, 293–312 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Pedram, P., Jalalzadeh, S.: Quantum FRW cosmological solutions in the presence of chaplygin gas and perfect fluid. Phys. Lett. B 659(1–2), 6–13 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Rendall, A.D.: The initial value problem for a class of general relativistic fluid bodies. J. Math. Phys. 33, 1047–1053 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Rendall, A.D.: Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound. Class. Quantum Gravity 21, 2445–2454 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Rendall, A.D.: Asymptotics of solutions of the einstein equations with positive cosmological constant. Ann. Henri Poincaré. 5, 1041–1064 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Rendall, A.D.: Intermediate inflation and the slow-roll approximation. Class. Quantum Gravity 22(9), 1655 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Rendall, A.D.: Dynamics of k-essence. Class. Quantum Gravity 23, 1557–1569 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Ringström, H.: The Bianchi IX attractor. Ann. Henri Poincaré 2(3), 405–500 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Ringström, H.: Future stability of the Einstein-non-linear scalar field system. Invent. Math. 173, 123–208 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Ringström, H.: The Cauchy Problem in General Relativity, ESI Lectures in Mathematics and Physics. European Mathematical Society, Zürich (2009)

    Book  MATH  Google Scholar 

  47. Rodnianski, I., Speck, J.: The nonlinear future stability of the FLRW family of solutions to the irrotational Euler-Einstein system with a positive cosmological constant. J. Eur. Math. Soc. 15, 2369–2462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rodnianski, I., Speck, J.: A regime of linear stability for the einstein-scalar field system with applications to nonlinear big bang formation. Ann. Math. 187(1), 65–156 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rodnianski, I., Speck, J.: Stable big bang formation in near-FLRW solutions to the einstein-scalar field and einstein-stiff fluid systems. Selecta Math. 24(5), 4293–4459 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Speck, J.: The nonlinear future stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant. Selecta Math. 18, 633–715 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Gorini, V., Kamenshchik, A., Moschella, U., Pasquier, V.: The Chaplygin Gas as a Model for Dark Energy, The Tenth Marcel Grossmann. World Scientific Publishing Company, SingaporeMeeting (2006)

    MATH  Google Scholar 

  52. Wald, R.M.: General Relativity. University of Chicago Press, USA (2010)

    MATH  Google Scholar 

  53. Yang, R.: Large-scale structure in superfluid chaplygin gas cosmology. Phys. Rev. D 89(6), 063014 (2014)

    Article  ADS  Google Scholar 

  54. Zenginoglu, A.: Hyperboloidal evolution with the Einstein equations. Class. Quant. Grav. 25, 195025 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Todd A. Oliynyk for helpful discussions. The first author thanks Prof. Uwe Brauer for his useful comments and is partially supported by the China Postdoctoral Science Foundation Grant under the Grant No. 2018M641054, the Fundamental Research Funds for the Central Universities, HUST: 5003011036 and the National Natural Science Foundation of China (NSFC) under the Grant No. 11971503. The second author is grateful to the financial support from Monash University during his stay, and is partially supported by the National Natural Science Foundation of China (NSFC) under the Grant Nos. 12071435, 11701517, 11871212, the Natural Science Foundation of Zhejiang Province under the Grant No. LY20A010026 and the Fundamental Research Funds of Zhejiang Sci-Tech University under the grant No. 2020Q037. We also thank the referee for their comments and criticisms, which have served to improve the content and exposition of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chao Liu and Changhua Wei have contributed equally to this article and should be regarded as co-first authors.

Appendix A. A class of symmetric hyperbolic systems

Appendix A. A class of symmetric hyperbolic systems

In this Appendix, we introduce the main tool for this article which is a variation of the theorem originally established in [37, Appendix B]. The proof of it has been omit, but readers can see the detailsFootnote 5 in [37], and its generalizations in [25, 26].

Consider the following symmetric hyperbolic system.

$$\begin{aligned} B^{\mu }\partial _{\mu }u =&\frac{1}{t}\mathbf {BP}u+H\quad \text {in}\;[T_{0},T_{1}]\times \mathbb {T}^{n}, \end{aligned}$$
(A.1)
$$\begin{aligned} u =&u_{0}\quad \quad \quad \qquad \text {in}\;{T_{0}}\times \mathbb T^{n}, \end{aligned}$$
(A.2)

where we require the following Conditions:

  1. (I)

    \(T_{0}<T_{1}\le 0\).

  2. (II)

    \(\mathbf {P}\) is a constant, symmetric projection operator, i.e., \(\mathbf {P}^{2}=\mathbf {P}\), \(\mathbf {P}^{T}=\mathbf {P}\) and \(\partial _\mu \mathbf {P}=0\).

  3. (III)

    \(u=u(t,x)\) and H(tu) are \(\mathbb R^{N}\)-valued maps, \(H\in C^{0}([T_{0},0],C^{\infty }(\mathbb R^{N}))\) and satisfies \(H(t,0)=0\).

  4. (IV)

    \(B^{\mu }=B^{\mu }(t,u)\) and \(\mathbf {B}=\mathbf {B}(t,u)\) are \(\mathbb M_{N\times N}\)-valued maps, and \(B^{\mu },\,\mathbf {B}\in C^{0}([T_{0},0],C^{\infty }( \mathbb R^{N}))\), \(B^{0}\in C^{1}([T_{0},0],C^{\infty }( \mathbb R^{N}))\), and they satisfy

    $$\begin{aligned} (B^{\mu })^{T}=B^{\mu },\quad [\mathbf {P}, \mathbf {B}]=\mathbf {PB}-\mathbf {BP}=0. \end{aligned}$$
    (A.3)
  5. (V)

    SupposeFootnote 6

    $$\begin{aligned} B^0=&\mathring{B}^0(t)+\tilde{B}^0 (t,u) \end{aligned}$$
    (A.4)

    and

    $$\begin{aligned} \mathbf {B}= & {} \mathring{\mathbf {B}}(t) +\tilde{\mathbf {B}} (t,u) \end{aligned}$$
    (A.5)

    where \(\tilde{B}^0 (t,0)=0\) and \(\tilde{\mathbf {B}} (t,0)=0\). There exists constants \(\kappa ,\,\gamma _{1},\,\gamma _{2}\) such that

    $$\begin{aligned} \frac{1}{\gamma _{1}}\mathbb I\le \mathring{B}^{0}\le \frac{1}{\kappa }\mathring{\mathbf {B}}\le \gamma _{2}\mathbb I \end{aligned}$$
    (A.6)

    for all \( t \in [T_{0},0] \).

  6. (VI)

    For all \((t,u)\in [T_{0},0]\times \mathbb R^{N}\), we have

    $$\begin{aligned} \mathbf {P}^{\bot }B^{0}(t,\mathbf {P}^\perp u)\mathbf {P}=\mathbf {P}B^{0}(t,\mathbf {P}^\perp u)\mathbf {P}^{\bot }=0, \end{aligned}$$

    where \( \mathbf {P}^{\bot }=\mathbb I-\mathbf {P} \) is the complementary projection operator.

  7. (VII)

    There exists constants \(\varsigma ,\,\beta _{1}\) and \(\varpi >0\) such that

    $$\begin{aligned} |\mathbf {P}^{\bot }[D_{u}B^{0}(t,u)(B^{0})^{-1}\mathbf {BP}u]\mathbf {P}^{\bot }|_{op} \le&|t|\varsigma +\frac{2\beta _{1}}{\varpi +|P^{\bot }u|^2}|\mathbf {P}u|^{2}. \end{aligned}$$
    (A.7)

Theorem 5.4

Suppose that \(k\ge \frac{n}{2}+1\), \(u_{0}\in H^{k}(\mathbb T^{n})\) and conditions (I)–(VII) are fulfilled. Then there exists a \(T_{*}\in (T_{0},0)\), and a unique classical solution \(u\in C^{1}([T_{0},T_{*}]\times \mathbb T^{n})\) that satisfies \(u\in C^{0}([T_{0},T_{*}],H^{k})\cap C^{1}([T_{0},T_{*}],H^{k-1})\) and the energy estimate

$$\begin{aligned} \Vert u(t)\Vert _{H^{k}}^{2}-\int _{T_{0}}^{t}\frac{1}{\tau }\Vert \mathbf {P}u\Vert _{H^{k}}^{2}\mathrm{d}\tau \le Ce^{C(t-T_{0})}(\Vert u(T_{0})\Vert _{H^{k}}^{2}) \end{aligned}$$

for all \(T_{0}\le t<T_{*}\), where \( C=C(\Vert u\Vert _{L^{\infty }([T_{0},T_{*}),H^{k})},\gamma _{1},\gamma _{2},\kappa ), \) and can be uniquely continued to a larger time interval \([T_{0},T^{*})\) for all \(T^{*}\in (T_{*},0]\) provided \(\Vert u\Vert _{L^{\infty }([T_{0},T_{*}),W^{1,\infty })}<\infty \).

Let us end this Appendix with a remark of the proof although we omit the detailed proof.

Remark 5.5

We give the key revision in the proof due to the changing of Condition (V), (i.e., (A.4)–(A.6)). As in [26, Page 2203], we rewrite \(\mathring{B}^0 \) as \(\mathring{B}^0 =(\mathring{B} ^0 )^{\frac{1}{2}}(\mathring{B}^0 )^{\frac{1}{2}}\), which can be done since \(\mathring{B}^0 \) is a real symmetric and positive-definite. We see from (A.6) that

$$\begin{aligned} (\mathring{B} ^0)^{-\frac{1}{2}}\mathring{\mathbf {B}}(\mathring{B}^0)^{-\frac{1}{2}}\ge \kappa \mathbb {1}. \end{aligned}$$
(A.8)

Since, by (A.3)–(A.5)

$$\begin{aligned} \frac{2}{t} \langle D^\alpha u, \mathbf {B} D^\alpha \mathbf {P} u\rangle =&\frac{2}{t} \langle D^\alpha \mathbf {P} u, (\mathring{B}^0)^{\frac{1}{2}}[(\mathring{B}^0)^{-\frac{1}{2}}\mathring{\mathbf {B}} (\mathring{B}^0)^{-\frac{1}{2}}](\mathring{B}^0)^{\frac{1}{2}} D^\alpha \mathbf {P} u\rangle \\&+\frac{2}{t} \langle D^\alpha \mathbf {P} u, \tilde{\mathbf {B}} D^\alpha \mathbf {P} u\rangle \\ \le&\frac{2\kappa }{t} \langle D^\alpha \mathbf {P} u, \mathring{B}^0 D^\alpha \mathbf {P} u\rangle +\frac{2}{t} \langle D^\alpha \mathbf {P} u, \tilde{\mathbf {B}} D^\alpha \mathbf {P} u\rangle \\ =&\frac{2\kappa }{t} \langle D^\alpha \mathbf {P} u, B^0 D^\alpha \mathbf {P} u\rangle -\frac{2\kappa }{t} \langle D^\alpha \mathbf {P} u, \tilde{B}^0 D^\alpha \mathbf {P} u\rangle \\&+\frac{2}{t} \langle D^\alpha \mathbf {P} u, \tilde{\mathbf {B}} D^\alpha \mathbf {P} u\rangle . \end{aligned}$$

It follows immediately from (A.8) that

$$\begin{aligned} \frac{2}{t}\sum _{0\le |\alpha |\le s-1}\langle D^\alpha u,\mathbf {B} D^\alpha \mathbf {P} u\rangle \le \underbrace{\frac{2\kappa }{t}{\left| \left| \left| \mathbf {P} u \right| \right| \right| }^2_{H^{s-1}}}_{\text {I}}-\underbrace{\frac{1}{t} C \Vert u\Vert _{H^{s-1}} \Vert \mathbf {P}u\Vert ^2_{H^{s-1}}}_{\text {II}}, \end{aligned}$$
(A.9)

where

$$\begin{aligned} {\left| \left| \left| u \right| \right| \right| }^2_{H^k}:=\sum _{0\le |\alpha |\le k}\langle D^\alpha u, B^0\bigl (t,u(t,\cdot )\bigr ) D^\alpha u\rangle . \end{aligned}$$

Then, the following proof are the same as [37, Appendix B] or [26, §5] just noting that the term II in (A.9) can be absorbed by I in the rest of estimates provided the data is small enough.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wei, C. Future Stability of the FLRW Spacetime for a Large Class of Perfect Fluids. Ann. Henri Poincaré 22, 715–770 (2021). https://doi.org/10.1007/s00023-020-00987-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00987-1

Mathematics Subject Classification

Navigation