Skip to main content
Log in

Spectral Rigidity of Random Schrödinger Operators via Feynman–Kac Formulas

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We develop a technique for proving number rigidity (in the sense of Ghosh and Peres in Duke Math J 166(10):1789–1858, 2017) of the spectrum of general random Schrödinger operators (RSOs). Our method makes use of Feynman–Kac formulas to estimate the variance of exponential linear statistics of the spectrum in terms of self-intersection local times. Inspired by recent results concerning Feynman–Kac formulas for RSOs with multiplicative noise (Gaudreau Lamarre in Semigroups for one-dimensional Schrödinger operators with multiplicative Gaussian noise, Preprint arXiv:1902.05047v3, 2019; Gaudreau Lamarre and Shkolnikov in Ann Inst Henri Poincaré Probab Stat 55(3):1402–1438, 2019; Gorin and Shkolnikov in Ann Probab 46(4):2287–2344, 2018) by Gorin, Shkolnikov, and the first-named author, we use this method to prove number rigidity for a class of one-dimensional continuous RSOs of the form \(-\frac{1}{2}\Delta +V+\xi \), where V is a deterministic potential and \(\xi \) is a stationary Gaussian noise. Our results require only very mild assumptions on the domain on which the operator is defined, the boundary conditions on that domain, the regularity of the potential V, and the singularity of the noise \(\xi \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We remark that, although [36] pioneered the techniques of controlling the variance of linear the statistics for showing rigidity, this scheme is actually dated back to the works of Kolmogorov [43, 44] where he derived a sufficient condition for the linear rigidity of any stationary sequence. We refer to [10] and the references therein for more details on linear rigidity.

  2. We note that the variance formula in question is typically only stated for compactly supported functions. The result can easily be improved to (5.2) by using dominated convergence with standard asymptotics for the Airy function such as [1, 10.4.59–10.4.62].

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, DC (1964)

  2. Aizenman, M., Martin, P.: Structure of Gibbs states of one-dimensional Coulomb systems. Commun. Math. Phys. 78(1), 99–116 (1980/1981)

  3. Baddeley, A., Gregori, P., Mateu, J., Stoica, R., Stoyan, D. (ed.): Case Studies in Spatial Point Process Modeling, Volume 185 of Lecture Notes in Statistics. Springer, New York, 2006. Including papers from the Conference on Spatial Point Process Modelling and Its Applications held in Benicàssim (2004)

  4. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The two-dimensional Coulomb plasma: quasi-free approximation and central limit theorem. arXiv:1609.08582 (2016)

  5. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: Local density for two-dimensional one-component plasma. Commun. Math. Phys. 356(1), 189–230 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Bloemendal, A., Virág, B.: Limits of spiked random matrices I. Probab. Theory Relat. Fields 156(3–4), 795–825 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Bufetov, A.I.: Conditional measures of determinantal point processes. Preprint arXiv:1605.01400v1 (2016)

  8. Bufetov, A.I.: Rigidity of determinantal point processes with the Airy, the Bessel and the gamma kernel. Bull. Math. Sci. 6(1), 163–172 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Bufetov, A.I.: Quasi-symmetries of determinantal point processes. Ann. Probab. 46(2), 956–1003 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Bufetov, A.I., Dabrowski, Y., Qiu, Y.: Linear rigidity of stationary stochastic processes. Ergod. Theory Dyn. Syst. 38(7), 2493–2507 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Bufetov, A.I., Nikitin, P.P., Qiu, Y.: On number rigidity for Pfaffian point processes. Mosc. Math. J. 19(2), 217–274 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Bufetov, A.I., Qiu, Y.: Conditional measures of generalized Ginibre point processes. J. Funct. Anal. 272(11), 4671–4708 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Bufetov, A.I., Qiu, Y.: Determinantal point processes associated with Hilbert spaces of holomorphic functions. Commun. Math. Phys. 351(1), 1–44 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Carmona, R., Lacroix, J.: Spectral Theory of Random Schrödinger Operators. Probability and Its Applications. Birkhäuser Boston, Inc., Boston (1990)

    MATH  Google Scholar 

  15. Carmona, R.A., Molchanov, S.A.: Stationary parabolic Anderson model and intermittency. Probab. Theory Relat. Fields 102(4), 433–453 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Chatterjee, S.: Rigidity of the three-dimensional hierarchical Coulomb gas. Probab. Theory Relat. Fields 175, 1123–1176 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Chen, X.: Random Walk Intersections: Large Deviations and Related Topics, Volume 157 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2010)

    Google Scholar 

  18. Chen, X.: Quenched asymptotics for Brownian motion in generalized Gaussian potential. Ann. Probab. 42(2), 576–622 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Chen, X., Li, W.V.: Large and moderate deviations for intersection local times. Probab. Theory Relat. Fields 128(2), 213–254 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Chung, K.L., Zhao, Z.X.: From Brownian Motion to Schrödinger’s Equation, Volume 312 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1995)

    Google Scholar 

  21. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume II: General Theory and Structure. Probability and Its Applications, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  22. Dereudre, D.: Introduction to the theory of Gibbs point processes. In: Coupier D (ed.) Stochastic Geometry, Volume 2237 of Lecture Notes in Mathematics, pp. 181–229. Springer, Cham (2019)

  23. Dereudre, D., Hardy, A., Leblé, T., Maïda, M.: DLR equations and rigidity for the Sine–beta process. arXiv:1809.03989 (2018)

  24. Edelman, A., Sutton, B.D.: From random matrices to stochastic operators. J. Stat. Phys. 127(6), 1121–1165 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Fukushima, M., Nakao, S.: On spectra of the Schrödinger operator with a white Gaussian noise potential. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 37(3), 267–274 (1976/1977)

  26. Ganguly, S., Sarkar, S.: Ground states and hyperuniformity of the hierarchical Coulomb gas in all dimensions. arXiv:1904.05321 (2019)

  27. Gärtner, J., König, W.: Moment asymptotics for the continuous parabolic Anderson model. Ann. Appl. Probab. 10(1), 192–217 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Gärtner, J., König, W., Molchanov, S.A.: Almost sure asymptotics for the continuous parabolic Anderson model. Probab. Theory Relat. Fields 118(4), 547–573 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Gaudreau Lamarre, P.Y.: Semigroups for one-dimensional Schrödinger operators with multiplicative Gaussian noise. Preprint arXiv:1902.05047v3 (2019)

  30. Gaudreau Lamarre, P.Y., Shkolnikov, M.: Edge of spiked beta ensembles, stochastic Airy semigroups and reflected Brownian motions. Ann. Inst. Henri Poincaré Probab. Stat. 55(3), 1402–1438 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Ghosh, S.: Determinantal processes and completeness of random exponentials: the critical case. Probab. Theory Relat. Fields 163(3–4), 643–665 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Ghosh, S.: Palm measures and rigidity phenomena in point processes. Electron. Commun. Probab. 21(85), 14 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Ghosh, S., Krishnapur, M.: Rigidity hierarchy in random point fields: random polynomials and determinantal processes. Preprint arXiv:1510.08814 (2015)

  34. Ghosh, S., Lebowitz, J.: Number rigidity in superhomogeneous random point fields. J. Stat. Phys. 166(3–4), 1016–1027 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Ghosh, S., Lebowitz, J.L.: Generalized stealthy hyperuniform processes: maximal rigidity and the bounded holes conjecture. Commun. Math. Phys. 363(1), 97–110 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Ghosh, S., Peres, Y.: Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues. Duke Math. J. 166(10), 1789–1858 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Gorin, V., Shkolnikov, M.: Stochastic Airy semigroup through tridiagonal matrices. Ann. Probab. 46(4), 2287–2344 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Gruet, J.-C., Shi, Z.: The occupation time of Brownian motion in a ball. J. Theor. Probab. 9(2), 429–445 (1996)

    MathSciNet  MATH  Google Scholar 

  39. Holroyd, A., Soo, T.: Insertion and deletion tolerance of point processes. Electron. J. Probab. 18(74), 24 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Kallenberg, O.: Random Measures, Theory and Applications, Volume 77 of Probability Theory and Stochastic Modelling. Springer, Cham (2017)

    Google Scholar 

  41. Kamae, T., Krengel, U., O’Brien, G.L.: Stochastic inequalities on partially ordered spaces. Ann. Probab. 5(6), 899–912 (1977)

    MathSciNet  MATH  Google Scholar 

  42. Karandikar, R.: On pathwise stochastic integration. Stoch. Process. Appl. 57(1), 11–18 (1995)

    MathSciNet  MATH  Google Scholar 

  43. Kolmogorov, A.N.: Stationary sequences in Hilbert space. Vestnik MGU 2(6), 1–40 (1941)

    MathSciNet  Google Scholar 

  44. Kolmogorov, A.N.: Interpolation und Extrapolation von stationaeren zufaelligen Folgen. Izv. Math. 5(1), 3–14 (1941)

    Google Scholar 

  45. König, W.: The Parabolic Anderson Model. Random Walk in Random Potential. Pathways in Mathematics. Birkhäuser, Springer, Cham (2016)

    MATH  Google Scholar 

  46. Krishnapur, M., Rider, B., Virág, B.: Universality of the stochastic Airy operator. Commun. Pure Appl. Math. 69(1), 145–199 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Minami, N.: Definition and self-adjointness of the stochastic Airy operator. Markov Process. Relat. Fields 21(3, part 2), 695–711 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Okounkov, A.: Generating functions for intersection numbers on moduli spaces of curves. Int. Math. Res. Not. 18, 933–957 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Olshanski, G.: The quasi-invariance property for the Gamma kernel determinantal measure. Adv. Math. 226(3), 2305–2350 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Papanicolaou, V.G.: The probabilistic solution of the third boundary value problem for second order elliptic equations. Probab. Theory Relat. Fields 87(1), 27–77 (1990)

    MathSciNet  MATH  Google Scholar 

  51. Peres, Y., Sly, A.: Rigidity and tolerance for perturbed lattices. Preprint arXiv:1409.4490v1 (2014)

  52. Ramírez, J.A., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Am. Math. Soc. 24(4), 919–944 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Reda, C., Najnudel, J.: Rigidity of the \({\rm Sine}_{\beta }\) process. Electron. Commun. Probab. 23, 8 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press [Harcourt Brace Jovanovich, Publishers], New York, London (1978)

    MATH  Google Scholar 

  55. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edn. Springer, Berlin (1999)

    Google Scholar 

  56. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N. S.) 7(3), 447–526 (1982)

    MATH  Google Scholar 

  57. Simon, B.: Operator Theory. A Comprehensive Course in Analysis, Part 4. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  58. Sznitman, A.-S.: Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Google Scholar 

  59. Takhtajan, L.A.: Quantum Mechanics for Mathematicians, Volume 95 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2008)

    Google Scholar 

  60. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Young, W .H.: On the multiplication of successions of Fourier constants. Proc. R. Soc. Lond. Ser. A 87(596), 331–339 (1912)

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was initiated while the authors were in residence at the Centre international de rencontres mathématiques (CIRM), in Marseille, France. The organizers of the conference Integrability and Randomness in Mathematical Physics and Geometry (April 2019) and the CIRM staff are gratefully acknowledged for fostering a productive research environment. The authors thank Ivan Corwin, Vadim Gorin, and Mykhaylo Shkolnikov for insightful discussions and comments, and Reda Chhaibi for helpful discussions. The authors thank an anonymous referee for a careful reading of a previous version of this paper, and for many detailed comments that helped substantially improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Yves Gaudreau Lamarre.

Additional information

Communicated by Claude-Alain Pillet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P. Y. Gaudreau Lamarre was partially funded by a Gordon Y. S. Wu Fellowship.

Appendix A: Transition Density Bounds

Appendix A: Transition Density Bounds

Proposition A.1

There exist constants \(0<c<C\) such that for every \(t\in (0,1]\),

$$\begin{aligned} ct^{-1/2}\le \inf _{x\in I}\Pi _Z(t;x,x) \qquad \text {and}\qquad \sup _{(x,y)\in I^2}\Pi _Z(t;x,y)\le Ct^{-1/2}. \end{aligned}$$
(A.1)

Proof

In Case 1, the result follows directly from the fact that \(\Pi _B(t;x,y)\le 1/\sqrt{2\pi t}\) and \(\Pi _B(t;x,x)=1/\sqrt{2\pi t}\) for all xy, and t. A similar argument holds for Case 2. Consider now Case 3. We recall that, by definition,

$$\begin{aligned} \Pi _Y(t;x,y):=\sum _{z\in 2b\mathbb Z\pm y}\mathscr {G}_t(x-z)=\frac{1}{\sqrt{2\pi t}}\left( \sum _{k\in \mathbb Z}\mathrm e^{-(x-2bk+y)^2/2t}+\mathrm e^{-(x-2bk-y)^2/2t}\right) . \end{aligned}$$

On the one hand, note that \(t\mapsto \mathrm e^{-z/t}\) is increasing in \(t>0\) for every \(z\ge 0\); hence for every \(t\in (0,1]\), one has

$$\begin{aligned}&\sup _{(x,y)\in (0,b)^2}\left( \sum _{k\in \mathbb Z}\mathrm e^{-(x-2bk+y)^2/2t}+\mathrm e^{-(x-2bk-y)^2/2t}\right) \\&\quad \le \sup _{(x,y)\in (0,b)^2}\left( \sum _{k\in \mathbb Z}\mathrm e^{-(x-2bk+y)^2/2}+\mathrm e^{-(x-2bk-y)^2/2}\right) <\infty . \end{aligned}$$

On the other hand, by isolating the \(k=0\) term in \(\sum _{k\in \mathbb Z}\mathrm e^{-(2bk)^2/2t}\),

$$\begin{aligned} \inf _{x\in (0,b)}\left( \sum _{k\in \mathbb Z}\mathrm e^{-(2x-2bk)^2/2t}+\mathrm e^{-(2bk)^2/2t}\right)\ge & {} \left( \inf _{x\in (0,b)}\sum _{k\in \mathbb Z}\mathrm e^{-(2x-2bk)^2/2t}\right) +1\\\ge & {} 1, \end{aligned}$$

concluding the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaudreau Lamarre, P.Y., Ghosal, P. & Liao, Y. Spectral Rigidity of Random Schrödinger Operators via Feynman–Kac Formulas. Ann. Henri Poincaré 21, 2259–2299 (2020). https://doi.org/10.1007/s00023-020-00921-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00921-5

Mathematics Subject Classification

Navigation