Skip to main content
Log in

Location of Eigenvalues of Non-self-adjoint Discrete Dirac Operators

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We provide quantitative estimates on the location of eigenvalues of one-dimensional discrete Dirac operators with complex \(\ell ^p\)-potentials for \(1\le p \le \infty \). As a corollary, subsets of the essential spectrum free of embedded eigenvalues are determined for small \(\ell ^1\)-potential. Further possible improvements and sharpness of the obtained spectral bounds are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramov, A.A., Aslanyan, A., Davies, E.B.: Bounds on complex eigenvalues and resonances. J. Phys. A Math. Gen. 34, 57–72 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bagarello, F., Gazeau, J.-P., Szafraniec, F.H., Znojil, M. (eds.): Non-selfadjoint Operators in Quantum Physics: Mathematical Aspects. Wiley-Interscience, Hoboken (2015)

    MATH  Google Scholar 

  3. Bairamov, E., Çelebi, A.O.: Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators. Q. J. Math. Oxf. Ser. (2) 50(200), 371–384 (1999)

    Article  MathSciNet  Google Scholar 

  4. Boykin, T.B., Klimeck, G.: The discretized Schrödinger equation and simple models for semiconductor quantum wells. Eur. J. Phys. 25, 503–514 (2004)

    Article  Google Scholar 

  5. Carvalho, S.L., de Oliveira, C.R., Prado, R.A.: Sparse one-dimensional discrete Dirac operators II: spectral properties. J. Math. Phys. 52(7), 073501, 21 (2011)

    Article  MathSciNet  Google Scholar 

  6. Cossetti, L.: Bounds on eigenvalues of perturbed Lamé operators with complex potentials (2019). ArXiv:1904.08445v1 [math.SP]

  7. Cuenin, J.-C.: Estimates on complex eigenvalues for Dirac operators on the half-line. Integr. Equ. Oper. Theory 79(3), 377–388 (2014)

    Article  MathSciNet  Google Scholar 

  8. Cuenin, J.-C.: Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials. J. Funct. Anal. 272(7), 2987–3018 (2017)

    Article  MathSciNet  Google Scholar 

  9. Cuenin, J.-C., Laptev, A., Tretter, C.: Eigenvalue estimates for non-selfadjoint Dirac operators on the real line. Ann. Henri Poincaré 15, 707–736 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cuenin, J.-C., Siegl, P.: Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications. Lett. Math. Phys. 108(7), 1757–1778 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. de Oliveira, C.R., Prado, R.A.: Spectral and localization properties for the one-dimensional Bernoulli discrete Dirac operator. J. Math. Phys. 46(7), 072105, 17 (2005)

    Article  MathSciNet  Google Scholar 

  12. Dubuisson, C.: On quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator. Integr. Equ. Oper. Theory 78, 249–269 (2014)

    Article  MathSciNet  Google Scholar 

  13. Enblom, A.: Resolvent estimates and bounds on eigenvalues for Dirac operators on the half-line. J. Phys. A Math. Theor. 51, 165203 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Fanelli, L., Krejčiřík, D.: Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators. Lett. Math. Phys. 109, 1473–1485 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. Fanelli, L., Krejčiřík, D., Vega, L.: Absence of eigenvalues of two-dimensional magnetic Schrödinger operators. J. Funct. Anal. 275(9), 2453–2472 (2018)

    Article  MathSciNet  Google Scholar 

  16. Fanelli, L., Krejčiřík, D., Vega, L.: Spectral stability of Schrödinger operators with subordinated complex potentials. J. Spectr. Theory 8(2), 575–604 (2018)

    Article  MathSciNet  Google Scholar 

  17. Frank, R.L.: Eigenvalue bounds for Schrödinger operators with complex potentials. III. Trans. Am. Math. Soc. 370(1), 219–240 (2018)

    Article  Google Scholar 

  18. Frank, R.L., Simon, B.: Eigenvalue bounds for Schrödinger operators with complex potentials. II. J. Spectr. Theory 7(3), 633–658 (2017)

    Article  MathSciNet  Google Scholar 

  19. Geronimo, J.S., Van Assche, W.: Orthogonal polynomials with asymptotically periodic recurrence coefficients. J. Approx. Theory 46(3), 251–283 (1986)

    Article  MathSciNet  Google Scholar 

  20. Gohberg, I., Goldberg, S., Krupnik, N.: Traces and Determinants of Linear Operators, Operator Theory: Advances and Applications, vol. 116. Birkhäuser, Basel (2000)

    Book  Google Scholar 

  21. Golénia, S., Haugomat, T.: On the a.c. spectrum of the 1D discrete Dirac operator. Methods Funct. Anal. Topol. 20(3), 252–273 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Hewitt, E., Ross, K.A.: Abstract harmonic analysis, vol. I, 2nd edn, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer, Berlin-New York, Structure of Topological Groups, Integration Theory, Group Representations (1979)

  23. Hulko, A.: On the number of eigenvalues of the discrete one-dimensional Dirac operator with a complex potential. Anal. Math. Phys. 9(1), 639–654 (2019)

    Article  MathSciNet  Google Scholar 

  24. Ibrogimov, O.O., Krejčiřík, D., Laptev, A.: Sharp bounds for eigenvalues of biharmonic operators with complex potentials in low dimensions (2019). ArXiv:1903.01810v1 [math.SP]

  25. Ibrogimov, O.O., Štampach, F.: Spectral enclosures for non-self-adjoint discrete Schrödinger operators. Integr. Equ. Oper. Theory 91, 53 (2019). https://doi.org/10.1007/s00020-019-2553-z

    Article  MATH  Google Scholar 

  26. Kopylova, E., Teschl, G.: Dispersion estimates for one-dimensional discrete Dirac equations. J. Math. Anal. Appl. 434(1), 191–208 (2016)

    Article  MathSciNet  Google Scholar 

  27. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  28. Sambou, D.: A criterion for the existence of nonreal eigenvalues for a Dirac operator. N. Y. J. Math. 22, 469–500 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    Article  MathSciNet  Google Scholar 

  30. Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Surveys and Monographs, vol. 72. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  31. Thaller, B.: The Dirac Equation. Springer, Berlin (1992)

    Book  Google Scholar 

Download references

Acknowledgements

The research of B.C. was partially supported by the Grant No.  17-01706S of the Czech Science Foundation (GAČR) and by Fondo Sociale Europeo—Programma Operativo Nazionale Ricerca e Innovazione 2014–2020, progetto PON: progetto AIM1892920-attività 2, linea 2.1—CUP H95G18000150006 ATT2. The research of D. K. was partially supported by the GACR Grant No. 18-08835S. F.Š. acknowledges financial support by the Ministry of Education, Youth and Sports of the Czech Republic project No. CZ.02.1.01/0.0/0.0/16_019/0000778.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Štampach.

Additional information

Communicated by Claude-Alain Pillet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Illustrative and Comparison Plots

Appendix: Illustrative and Comparison Plots

1.1 A: Plots of the Spectral Enclosures from Theorem 2

The spectral enclosure for the \(\ell ^{1}\)-potentials from Theorem 1 was displayed already in the introduction in Fig. 1. Similarly, we provide several plots illustrating the spectral enclosures from Theorem 2 in Fig. 2 below. Namely, the plots show the boundary curves given by the equation

$$\begin{aligned} g_p(\lambda ,m) \Vert V\Vert _p=1, \end{aligned}$$

for \(m=1\), \(\Vert V\Vert _p=\frac{j}{4}\), \(j\in \{1,2,\dots ,7\}\), and four choices of \(p\in \{3/2,2,3,5\}\).

Fig. 2
figure 2

The plots of the expanding boundary curves corresponding to the spectral enclosure from Theorem 2 for \(m=1\), \(\Vert V\Vert _p=\frac{j}{4}\), \(j\in \{1,2,\dots ,7\}\), and four choices of the parameter \(p>1\)

Fig. 3
figure 3

Boundary curves for the spectral enclosures Theorem 1 (dashed blue lines) compared to the corresponding result of Theorem 3 (solid red/green lines) with \(m=1/2\). Green color demonstrates the partial optimality in the sense of Theorem 5 (color figure online)

1.2 B: Comparison Plots for the \(\ell ^{1}\)-Bounds of Theorems 1 and 3 and Optimality

Next set of plots show the boundary curve of the spectral enclosure from Theorem 1 together with the corresponding improved result of Theorem 3 for a comparison. Moreover, the boundary curve of the improved spectral enclosure is made in two colors distinguishing the parts that are eigenvalues of some discrete Dirac operators as discussed in Theorem 5.

More concretely, in Fig. 3, we plot the boundary curve of Theorem 1 by blue dashed lines for \(m=1/2\) and several choices of \(\Vert V\Vert _{1}\). At the same time, we add a plot of the curve defined by the equation

$$\begin{aligned} \max \{|T_{0}(k)|,|T_{1}(k)|\}\Vert V\Vert _{1}=1, \end{aligned}$$

by red or green solid lines for the same choice of parameters. The parts of the curve made in green belong to the set \(\mathcal {D}\) and hence these points are eigenvalues of some discrete Dirac operators with \(\ell ^{1}\)-potentials. The remaining parts are made in red.

1.3 C: Comparison Plots for the \(\ell ^{p}\)-Bounds from Theorems 2, 3, and Corollary 2

In the next plots, we compare the spectral enclosures given in Theorems 2 and 3 for \(\ell ^{p}\)-potentials with \(p>1\). As an extra, we add also the spectral enclosure of Corollary 2 into these plots. In this numerical comparison, we exclude the result of Theorem 4 due to its complexity and non-reliability of the numerical computations. Note that it is clear from the proofs that Theorem 4 is an improvement of Theorem 2.

The comparison is made in plots in Fig. 4 where the boundary curve of the spectral enclosure from Theorem 2 is made in solid yellow lines, from Theorem 3 in red dashed lines, and from Corollary 2 in blue dotted lines for \(m=1\), \(\Vert V\Vert _{p}=0.7\), and four choices of the parameter \(p\in \{3/2,2,3,5\}\).

It is by no means evident whether one of the spectral enclosures of Theorems 2 and 3 is better than the other. However, numerical experiments indicate that none is better than the other, i.e.  none is a subset of the other, in general.

Fig. 4
figure 4

Boundary curves of spectral enclosures of Theorem 2 (solid yellow lines), Theorem 3 (red dashed lines), and Corollary 2 (blue dotted lines) for \(m=1\), \(\Vert V\Vert _{p}=0.7\), and four choices of the parameter \(p>1\)

1.4 D: A Plot for Remark 6

Finally, as an illustration for Remark 6, Fig. 5 shows for what k’s within the unit disk the norm of the diagonal element \(T_{0}(k)\) of the resolvent (2.1) is not dominant.

Fig. 5
figure 5

The blue subregion of the unit disk indicates the set of k’s for which \(|T_0(k)|<|T_1(k)|\) when \(m=1/8\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassano, B., Ibrogimov, O.O., Krejčiřík, D. et al. Location of Eigenvalues of Non-self-adjoint Discrete Dirac Operators. Ann. Henri Poincaré 21, 2193–2217 (2020). https://doi.org/10.1007/s00023-020-00916-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00916-2

Navigation