Skip to main content
Log in

Towards Holography in the BV-BFV Setting

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We show how the BV-BFV formalism provides natural solutions to descent equations and discuss how it relates to the emergence of holographic counterparts of given gauge theories. Furthermore, by means of an AKSZ-type construction we reproduce the Chern–Simons to Wess–Zumino–Witten correspondence from infinitesimal local data and show an analogous correspondence for BF theory. We discuss how holographic correspondences relate to choices of polarisation relevant for quantisation, proposing a semi-classical interpretation of the quantum holographic principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This is sometimes called the reduced phase space.

  2. One can think of Lagrangian densities as top form-valued functionals of field configurations.

  3. In particular, one considers the part of the EL locus for expressions that have one-form component along I, in degree zero. These can also be interpreted as evolution equations for degree-zero maps. We denote such critical fields by \(\mathrm {dgMap}^0_I(T[1]I,\mathcal {F}^{(1)}_\mathrm{CS})\).

  4. In fact this is necessary to define the WZW functional.

  5. Observe that such functional is manifestly a boundary term.

  6. Again \({\mathbb {D}}_{f_\mathrm{min}}\) is cohomologous to \({\mathbb {D}}_\mathrm{BF}^{(1)}\), with the latter being identically zero for BF theory.

  7. The problem arises when trying to define the space of codimension-1 fields as pre-symplectic reduction in the natural space of fields induced on a codimension-1 stratum, hence it is a strictification problem.

  8. This definition was in part inspired by a private communication of P.M. with E. Getzler, ca. 2014.

  9. We denote the modified Lagrangian by \(L_\mathrm{CMR}\) as a reference to Cattaneo, Mnëv and Reshetikhin, who introduced (the strict version of) Eq. (14a) under the name of Modified Classical Master Equation.

  10. Observe that \([f]^k\) must have ghost degree \((m-k)\), the same of \([\alpha ]^{k}\).

  11. The quantisation procedure only takes into account boundary polarisations, but generalisations to higher codimensions are being worked out, for example, in [41].

  12. In what follows, the superscript \(^{(k)}\) will denote form-degree instead of the previously used co-degree.

  13. This means that the outcome of the AKSZ procedure is, usually, a strict fully extended BV-BFV theory.

  14. We denote by \( \{\cdot ,\cdot \}_\omega \) the Poisson bracket induced by \(\omega \).

  15. This is equivalent to considering variational derivatives of the AKSZ action functional only with respect to fields in \(\mathrm {Map}(I,\mathcal {F}^{(1)})\).

  16. In fact, one needs to take the infinite prolongation of \(Q_\mathrm{CS}\); this step is always implied.

  17. A more general situation is when \(\alpha ^{(1)}\) is not a one-form but a connection on a line bundle. Then \(\omega ^{(1)}\) is interpreted as its curvature.

  18. We use the same symbol for A and \(\iota _{(1)}^*A\), as there should be no source of confusion.

  19. Notice that Eq. (57) is well-defined modulo \(4\pi ^2 \mathbb {Z}\) (for the standard normalisation of the Killing form on \(\mathfrak {g}\) and of the Cartan 3-form on G), in the case of a compact, simple Lie group G. Another example we will need for Sect. 3 is a group of the form \(\widetilde{G}=G\times \mathfrak {g}^*\). \(\widetilde{G}\) is neither simple nor compact, but the WZ term itself is well-defined (even without mod \(\mathbb {Z}\)) and in fact can be written as a surface (rather than bulk) integral, since the Cartan 3-form in this case is exact. Observe, furthermore, that the standard normalisation of the gauged WZW action functionals in the literature times \(2\pi i\) (see, for example, [38]) recovers the one presented here, where a different convention on group actions is used.

  20. For Blattner–Kostant–Sternberg.

  21. Here we understand that we are quantising the reduced phase space (the moduli space of flat connections on \(\Sigma \)). Equivalently (see Sect. 2.5), we quantise the non-reduced BFV phase space and then pass to the cohomology of the quantum BFV differential \(\Omega \).

  22. In this transition we need to integrate by parts in the second term in (73). Here it is important that \(\Sigma \) has no boundary.

  23. Observe that in this version all fields are of degree 0.

  24. Notice that \(\star dx_\pm = \mp dx_\pm \).

  25. Restricted to the transversal EL locus of Definition 58.

  26. A cotangent Lie algebra is of the form \(\mathfrak {g}=T^*\mathfrak {h} =\mathfrak {h} \ltimes \mathfrak {h}^*\).

  27. Observe that this is also a mapping space: \(\mathcal {F}_{\Sigma ^{(1)}}=\mathrm {Map}(T[1]\Sigma ^{(1)}, T^*[1]M)\).

  28. Notice that the \(cA^\dag \) part of \(f_\mathrm{min}^{1,0}\) is gauge invariant and drops out of the calculation.

References

  1. Alekseev, A., Barmaz, Y., Mnev, P.: Chern–Simons theory with Wilson lines and boundary in the BV-BFV formalism. J. Geom. Phys. 67, 1–15 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Alexandrov, M., Kontsevich, M., Schwarz, A., Zaboronsky, O.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12, 1405–1430 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Alekseev, A., Naef, F., Xu, X., Zhu, C.: Chern–Simons, Wess–Zumino and other cocycles from Kashiwara Vergne associators. Lett. Math. Phys. 108(3), 757–778 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Anderson, I. M.: The variational Bicomplex, Unfinished Book. http://deferentialgeometry.org/papers/The%20Variational%20Bicomplex.pdf. Accessed 25 Oct 2019

  5. Axelrod, S., Pietra, S.Della, Witten, E.: Geometric quantization of Chern–Simons theory. J. Differ. Geom. 33, 787–902 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Barnich, G., Brandt, F., Henneaux, M.: Local BRST cohomology in gauge theories. Phys. Rep. 338, 439 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Batalin, I.A., Vilkovisky, G.A.: Relativistic S-matrix of dynamical systems with boson and fermion costraints. Phys. Lett. B 69(3), 309–312 (1977)

    ADS  Google Scholar 

  8. Batalin, I.A., Vilkovisky, G.A.: Gauge algebra and quantization. Phys. Lett. B 102(1), 27–31 (1981)

    ADS  MathSciNet  Google Scholar 

  9. Batalin, I.A., Fradkin, E.S.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122(2), 157–164 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Becchi, C., Rouet, A., Stora, R.: The abelian Higgs Kibble model, unitarity of the S-operator. Phys. Lett. B 52, 344 (1974)

    ADS  Google Scholar 

  11. Becchi, C., Rouet, A., Stora, R.: Renormalization of the abelian Higgs–Kibble model. Commun. Math. Phys. 42, 127 (1975)

    ADS  MathSciNet  Google Scholar 

  12. Becchi, C., Rouet, A., Stora, R.: Renormalization of gauge theories. Ann. Phys. 98(2), 287–321 (1976)

    ADS  MathSciNet  Google Scholar 

  13. Bieri, S., Fröhlich, J.: Physical principles underlying the quantum Hall effect. C. R. Phys. 12, 332–346 (2011)

    ADS  Google Scholar 

  14. Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory. Commun. Math. Phys. 345(3), 741–779 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Canepa, G., Schiavina, M.: Fully extended BV-BFV description of general relativity in three dimensions. arXiv:1905.09333

  16. Carlip, S.: Conformal field theory, (2+1)-dimensional gravity, and the BTZ black hole. Class. Quantum Gravity 22, 85–124 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Cattaneo, A.S., Cotta-Ramusino, P., Fröhlich, J., Martellini, M.: Topological BF theories in 3 and 4 dimensions. J. Math. Phys. 36, 6137 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Cattaneo, A. S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591–611 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Cattaneo, A.S., Mnev, P., Wernli, K.: Split Chern-Simons theory in the BV-BFV formalism. In: Cardona, A., Morales, P., Ocampo, H., Paycha, S., Reyes Lega, A.F. (eds.) Quantization, Geometry and Noncommutative Structures in Mathematics and Physics, pp. 293–324. Springer, Cham (2017)

    MATH  Google Scholar 

  20. Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Classical BV theories on manifolds with boundary. Commun. Math. Phys. 332(2), 535–603 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Perturbative quantum gauge theories on manifolds with boundary. Commun. Math. Phys 357(2), 631–730 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Poisson sigma model and semiclassical quantization of integrable systems. In: Mo-Lin, G., Niemi, A.J., Phua KK., Takhtajan, L.A. (eds.) Ludwig Faddeev Memorial Volume, pp. 93–118. World Scientific, Singapore (2018)

    Google Scholar 

  23. Cattaneo, A.S., Rossi, C.: Higher-dimensional BF theories in the Batalin–Vilkovisky formalism: the BV action and generalized Wilson loops. Commun. Math. Phys. 221, 591–657 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Cattaneo, A.S., Schiavina, M.: BV-BFV approach to general relativity: Einstein–Hilbert action. J. Math. Phys. 57, 023515 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Cattaneo, A.S., Schiavina, M.: On time. Lett. Math. Phys. 107(2), 375–408 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Cattaneo, A. S., Schiavina, M.: BV-BFV approach to general relativity: Palatini–Cartan–Holst action. In: Advances in Theoretical and Mathematical Physics (to appear). arXiv:1707.05351

  27. Cattaneo, A.S., Schiavina, M., Selliah, I.: BV-equivalence between triadic gravity and BF theory in three dimensions. Lett. Math. Phys. 108(8), 1873–1884 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Cho, G.Y., Moore, J.: Topological BF field theory description of topological insulators. Ann. Phys. 326, 1515–1535 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Contreras, I., Schiavina, M., Wernli, K.: Integration of algebroids via the AKSZ construction (in preparation)

  30. Costello, K.: Renormalization and Effective Field Theory, Mathematical Surveys and Monographs, vol. 170. Americal Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  31. Costello, K., Gwilliam, O.: Factorization Algebras in Quantum Field Theory, Volume 1, New Mathematical Monographs, vol. 31. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  32. Coussaert, O., Henneaux, M., van Driel, P.: The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant. Class. Quantum Gravity 12, 2961–2966 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Delgado, N.L.: Lagrangian field theories: ind/pro-approach and \(L_\infty \)-algebra of local observables, PhD thesis (2017)

  34. Deligne, P., Freed, D.S.: Classical field theory. In: Freed, D.S., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Deligne, P., Etingof, P., Witten, E. (eds.) Quantum Fields and Strings: A Course for Mathematicians, vol. 1, pp. 137–226. American Mathematical Society, Providence (1999)

    Google Scholar 

  35. Donnelly, W., Freidel, L.: Local subsystems in gauge theory and gravity. J. High Energy Phys. 09, 102 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Elitzur, S., Moore, G., Schwimmer, A., Seiberg, N.: Remarks on the canonical quantization of the Chern–Simons–Witten theory. Nucl. Phys. B 326(1), 108–134 (1989)

    ADS  MathSciNet  Google Scholar 

  37. Fröhlich, J.: Chiral anomaly, topological field theory, and novel states of matter. In: Molin, G., Antti, N., Kok Khoo, P., Takhtajan, L.A. (eds.) Ludwig Faddeev Memorial Volume: A Life in Mathematical Physics. World Scientific, Singapore (2018)

    Google Scholar 

  38. Gawedzki, K., Kupiainen, A.: SU(2) Chern–Simons theory at genus zero. Commun. Math. Phys. 135, 531–546 (1991)

  39. Geiller, M.: Edge modes and corner ambiguities in3d Chern–Simons theory and gravity. Nucl. Phys. B 924, 312–365 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Ikeda, N.: Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 235, 435–464 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Iraso, R., Mnev, P.: Two-Dimensional Yang-Mills Theory on Surfaces with Corners in Batalin-Vilkovisky Formalism—Iraso, Riccardo and Mnev, Pavel. Commun. Math. Phys. 370(2), 637–702 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Mañes, J., Stora, R., Zumino, B.: Algebraic study of chiral anomalies. Commun. Math. Phys. 102, 157–174 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Mathieu, P., Schenkel, A., Teh, N. J., Wells, L.: Homological perspective on edge modes in linear Yang–Mills theory (2019). arXiv:1907.10651

  44. Mnev, P.: Discrete BF Theory. arXiv:0809.1160

  45. Rejzner, K.: Perturbative Algebraic Quantum Field Theory, Mathematical Physics Studies. Springer, Berlin (2016)

    MATH  Google Scholar 

  46. Schaller, P., Strobl, T.: Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 9(33), 3129–3136 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Tyutin, I.V.: Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism, vol. 39. Lebedev Physics Institute preprint (1975). arXiv:0812.0580

  48. Wess, J., Zumino, B.: Consequences of anomalous Ward identities. Phys. Lett. 37B, 95 (1971)

    ADS  MathSciNet  Google Scholar 

  49. Witten, E.: Global aspects of current algebra. Nucl. Phys. B 223, 422 (1983)

    ADS  MathSciNet  Google Scholar 

  50. Witten, E.: Non-Abelian bosonization in two dimensions. Commun. Math. Phys. 92, 455 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Witten, E.: Topological sigma models. Commun. Math. Phys 118(3), 411–449 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Zumino, B.: Cohomology of gauge groups: cocycles and Schwinger terms. Nucl. Phys. B 253, 477–493 (1985)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Schiavina.

Additional information

Communicated by Boris Pioline.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was (partly) supported by the NCCR SwissMAP, funded by the Swiss National Science Foundation and by the COST Action MP1405 QSPACE, supported by COST (European Cooperation in Science and Technology). P. M. acknowledges partial support of RFBR No. 17-01-00283a. M.S. acknowledges partial support by SNF Grant No. P300P2_177862. K.W acknowledges partial support of SNF Grant No. 200020 172498/1, the Forschungskredit of the University of Zurich, Grant No. FK-16-093, GRC Travel Grant 2017_Q3_TG_005, a Dirichlet Fellowship of the Berlin Mathematical School, and SNF Postdoc fellowship P2ZHP2_184083. P. M. would like to thank Andrey S. Losev and Nicholas J. Teh for inspiring discussions. M. S. would like to thank the University of Notre Dame for facilitating collaboration on this project. The authors would like to thank Alberto S. Cattaneo for helpful discussions and the anonymous referee for helping improve the paper.

Appendix A. Proofs of Section 2.3

Appendix A. Proofs of Section 2.3

Proof of Lemma 53

The first statement follows from a standard computation, of which we report only a few steps. Considering first the classical (i.e. degree-0) part, we have

$$\begin{aligned} S[A^g]&= \int _M \frac{1}{2}\langle A,dA \rangle + \frac{1}{6}\langle A, [A,A]\rangle -\frac{1}{12}\langle g^{-1}dg, [g^{-1}dg,g^{-1}dg] \rangle \\&\quad - \frac{1}{2}\langle g^{-1}Ag, dg^{-1}dg \rangle + \frac{1}{2}\langle g^{-1}dg, d(g^{-1}Ag) \rangle \\&\quad + \frac{1}{2}\langle g^{-1}Ag, dg^{-1}Ag - g^{-1}Adg\rangle + \frac{1}{2}\langle g^{-1}dg,[g^{-1}Ag,g^{-1}Ag]\rangle . \end{aligned}$$

In the first line, we find the classical CS action and the WZ functional. The terms in the second line combine into a total derivative and yield a boundary term

$$\begin{aligned} \frac{1}{2}\int _{\partial M} \langle A,dg g^{-1} \rangle . \end{aligned}$$

The last line vanishes due to the invariance of the inner product. Finally, turning to the extended BV action we recall that the covariant derivative of a graded field \(\omega \) satisfies \(d_A^g\omega ^g = (d_A\omega )^g\). It follows immediately from invariance of the inner product that the remaining terms in the extended action (56) are gauge invariant. The claim follows.

In the case of the polarised action, we first compute the effect of a gauge transformation on the polarising functionalFootnote 28\(f_\mathrm{min}^{1,0}\):

$$\begin{aligned} \int \limits _{\partial M} f_\mathrm{min}^{1,0}[{\mathcal {A}}^g] - f_\mathrm{min}^{1,0}[{\mathcal {A}}]&= \frac{1}{2} \int _{\partial M} \Big \{ \langle g^{-1}A^{1,0}g, g^{-1}A^{0,1}g\rangle + \langle g^{-1}\partial g, g^{-1}A^{0,1}g\rangle \\&\quad + \langle g^{-1}A^{1,0}g, g^{-1}{\bar{\partial }} g \rangle \\&\quad + \langle g^{-1} \partial g, g^{-1} {\bar{\partial }} g\rangle - \langle A^{1,0},A^{0,1}\rangle \Big \}\\&= \frac{1}{2}\int _{\partial M} \langle g^{-1}\partial g, g^{-1}A^{0,1}g\rangle + \langle g^{-1}A^{1,0}g, g^{-1}{\bar{\partial }} g \rangle \\&\quad + \langle g^{-1} \partial g, g^{-1}{\bar{\partial }} g\rangle . \end{aligned}$$

Then,

$$\begin{aligned} S^{1,0}[{\mathcal {A}}^g]-S^{1,0}[{\mathcal {A}}]= & {} S[A^g]- S[A] + \int \limits _{\partial M} f_\mathrm{min}^{1,0}[A^g] - f_\mathrm{min}^{1,0}[A] \\= & {} \int _{\partial M} \frac{1}{2}\langle g^{-1}Ag, g^{-1}dg \rangle - \int _M \frac{1}{12} \langle g^{-1}dg,[g^{-1}dg,g^{-1}dg]\rangle \\&+ \frac{1}{2}\int _{\partial M} \langle g^{-1}\partial g, g^{-1}A^{0,1}g\rangle + \langle g^{-1}A^{1,0}g, g^{-1}{\bar{\partial }} g \rangle \\&+ \langle g^{-1} \partial g, g^{-1}{\bar{\partial }} g\rangle \\= & {} \int _{\partial M} \langle g^{-1}A^{1,0}g, g^{-1}{\bar{\partial }} g \rangle + \frac{1}{2} \langle g^{-1} \partial g, g^{-1}{\bar{\partial }} g\rangle \\&-\int _M \frac{1}{12}\langle g^{-1}dg,[g^{-1}dg,g^{-1}dg]\rangle . \end{aligned}$$

\(\square \)

Proof of Lemma 54

This follows immediately from

$$\begin{aligned} S_\mathrm{gWZ}(h^{-1}g,A^h)= & {} S_\mathrm{CS}(A^g) - S_\mathrm{CS}(A^h) =\nonumber \\= & {} \Big (S_\mathrm{CS}(^g A)-S_\mathrm{CS}(A)\Big ) - \Big (S_\mathrm{CS}(^h A) +S_\mathrm{CS}(A)\Big ) \nonumber \\= & {} S_\mathrm{gWZ}(g,A) - S_\mathrm{gWZ}(h,A). \end{aligned}$$
(133)

\(\square \)

Proof of Lemma 55

Using the defining property of the path-ordered exponential, \(\frac{d}{dt}\mathrm {Pexp}(\int _0^t \gamma _s ds)= \mathrm {Pexp}(\int _0^t \gamma _s ds) \gamma _t\), we have that \(g^{-1}_t\dot{g}_t = \gamma _t\). Hence,

$$\begin{aligned} \frac{d}{dt} A^{g_t}= & {} \frac{d}{dt} (g^{-1}_tA\,g_t+ g^{-1}_tdg_t) = [g^{-1}_tA\,g_t, \gamma _t] - \gamma _t g^{-1}_tdg_t + g^{-1}_td\dot{g}_t \\= & {} [g^{-1}_tA\,g_t, \gamma _t] + [g^{-1}_tdg_t,\gamma _t] + d\gamma _t = d_{A^{g_t}}\gamma _t. \end{aligned}$$

The second claim follows from a simple direct calculation: denoting \(\phi _t\equiv g_t^{-1}dg_t\)

$$\begin{aligned} \dot{\phi }= & {} \frac{d}{dt}g_t^{-1} dg_t + g^{-1}_t d (\dot{g}_t) = -g_t^{-1}\dot{g}_t g_t^{-1} dg_t + g_t^{-1}d (\dot{g}_t) \\= & {} - \gamma _t g_t^{-1} dg_t + g_t^{-1} dg_t \gamma _t + d\gamma _t = d\gamma _t + [g_t^{-1} dg_t,\gamma _t]= d_{\phi _t}\gamma _t. \end{aligned}$$

\(\square \)

Proof of Lemma 56

The Wess–Zumino functional in Eq. (57) does not depend on the extension \(\widetilde{g}\): choosing a different extension changes \(S_{WZ}\) by a constant. In particular, this is irrelevant when taking a time derivative. Hence, let us choose an extension \(\widetilde{g}_t:=\mathrm {Pexp}(\int _0^t \widetilde{\gamma }_s ds)\), with \(\widetilde{\gamma }_t:M \rightarrow \mathfrak {g}\) an extension of \(\gamma _t\), i.e. \(\widetilde{\gamma }_t\vert _{\partial M}=\gamma _t\). For simplicity of notation, we drop the tildes in what follows. Let us denote again \(\phi _t\equiv g_t^{-1}dg_t\). Because \(\phi _t\) is the (pullback of the) Maurer–Cartan form on G, in addition to Lemma 55 we have that

$$\begin{aligned} d\phi _t = -\frac{1}{2}[\phi _t,\phi _t]. \end{aligned}$$

Then, we can directly compute

$$\begin{aligned} \frac{d}{dt}S_{WZ}[g_t]= & {} -\frac{d}{dt} \int _M \frac{1}{12}\langle \phi _t,[\phi _t,\phi _t]\rangle = \frac{d}{dt} \int _M \frac{1}{6}\langle \phi _t,d\phi _t\rangle \\= & {} \frac{1}{6}\int _M \langle \dot{\phi }_t,d\phi _t\rangle + \langle {\phi }_t,d\dot{\phi }_t\rangle \\= & {} \frac{1}{6}\int \limits _M \langle d\gamma _t, d\phi _t\rangle + \langle [\phi _t,\gamma _t],d\phi _t\rangle + \langle \phi _t,d(d\gamma _t + [\phi _t,\gamma _t])\rangle \\= & {} \frac{1}{6}\int \limits _M \langle d\gamma _t, d\phi _t\rangle - \langle [\phi _t,\phi _t],d\gamma _t\rangle = \frac{1}{2}\int \limits _M \langle d\gamma _t, d\phi _t\rangle \\= & {} -\frac{1}{2}\int \limits _M d \left[ \langle d\gamma _t, \phi _t\rangle \right] = \frac{1}{2}\int \limits _{\partial M} \langle \phi _t, d\gamma _t\rangle . \end{aligned}$$

\(\square \)

Proof of Proposition 57

Using Lemma 55, Lemma 56 and denoting again \(\phi _t\equiv g_t^{-1}dg_t\), we compute

$$\begin{aligned} \frac{d}{dt} S_\mathrm{gWZ}= & {} \frac{1}{2}\int _{\partial M} \left\langle \frac{d}{dt}\left( g_t^{-1}A\,g_t\right) , \phi _t\right\rangle + \langle g_t^{-1}A\,g_t, \dot{\phi }_t\rangle - \frac{d}{dt}\int _M \frac{1}{12}\langle \phi _t,[\phi _t,\phi _t]\rangle \\= & {} \frac{1}{2} \int _{\partial M}\langle -\gamma _t\,g_t^{-1}A\,g_t, \phi _t\rangle + \langle g_t^{-1}A\,g_t\,\gamma _t, \phi _t\rangle + \langle g_t^{-1}A\,g_t,d\gamma _t\rangle \\&+ \langle g_t^{-1}A\,g_t,[\phi _t,\gamma _t]\rangle + \langle \phi _t, d\gamma _t \rangle \\= & {} \frac{1}{2} \int _{\partial M}\langle [g_t^{-1}A\,g_t,\gamma _t], \phi _t\rangle + \langle g_t^{-1}A\,g_t,[\phi _t,\gamma _t] \rangle \\&+ \langle \left( g_t^{-1}A\,g_t + \phi _t\right) , d\gamma _t\rangle = \frac{1}{2} \int _{\partial M} \langle A^{g_t}, d\gamma _t\rangle \end{aligned}$$

where we used \(\langle g_t^{-1}A\,g_t,[\phi _t,\gamma _t]\rangle = - \langle [g_t^{-1}A\,g_t,\gamma _t],\phi _t\rangle \).

The details of the calculation for \(S_\mathrm{gWZW}^{1,0}\) are identical, upon replacing \(g^{-1}dg\) with \(g^{-1}\bar{\partial }g\), the connection A with \(A^{1,0}\), and expanding \(d=\partial + \bar{\partial }\) in the right-hand side of formula (64). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mnev, P., Schiavina, M. & Wernli, K. Towards Holography in the BV-BFV Setting. Ann. Henri Poincaré 21, 993–1044 (2020). https://doi.org/10.1007/s00023-019-00862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00862-8

Navigation