Skip to main content
Log in

Global Seiberg–Witten Maps for U(n)-Bundles on Tori and T-duality

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Seiberg–Witten maps are a well-established method to locally construct noncommutative gauge theories starting from commutative gauge theories. We revisit and classify the ambiguities and the freedom in the definition. Geometrically, Seiberg–Witten maps provide a quantization of bundles with connections. We study the case of U(n)-vector bundles on two-dimensional tori, prove the existence of globally defined Seiberg–Witten maps (induced from the plane to the torus) and show their compatibility with Morita equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There is a simple proof of (2.12), (2.13) [13]: multiplying the differential equations by \(\theta ^{\mu \nu }\) and analyzing them order by order yields

    $$\begin{aligned} \theta ^{\mu \nu } { \partial \over \partial \theta ^{\mu \nu }} A_\rho ^{n+1}= & {} (n+1) A_\rho ^{n+1}= - \frac{\pi }{2} \theta ^{\mu \nu } \{ {{\hat{A}}}_{\mu }, \partial _{\nu } {{\hat{A}}}_\rho + {{\hat{F}}}_{\nu \rho } \}_\star ^n ,~~\\ \theta ^{\mu \nu } { \partial \over \partial \theta ^{\mu \nu }} \varepsilon ^{n+1}= & {} (n+1) \varepsilon ^{n+1}= - \frac{\pi }{2} \theta ^{\mu \nu } \{ {{\hat{A}}}_{\mu }, \partial _{\nu } {{\hat{\varepsilon }}}\}_\star ^n \end{aligned}$$

    since \(A_\rho ^{n+1}\) and \(\varepsilon ^{n+1}\) are homogeneous functions of \(\theta \) of order \(n+1\).

  2. Since the bundle is a positive definite hermitian complex vector bundle and the algebra of continuous functions \(C(T)\) is a \(C^\star \)-algebra, we also have that \(\mathcal {E}_{n,m}\) is a Hilbert module over \(C(T)\).

  3. With slight abuse of terminology, we call \(\mathbb {C}[[\theta ]]\)-modules (and \(\mathbb {C}[[\theta ]]\)-submodules) simply linear spaces (and subspaces).

  4. There are different notions of Morita equivalence: The one just recalled for algebras (and more generally rings), a stronger notion for \(C^*\)-algebras, and, in the case of (multidimensional) tori, an even stronger one called complete Morita equivalence of smooth noncommutative tori [9] (called gauge Morita equivalence in [20]). These notions for two-dimensional tori are all equivalent (the bimodules \({\mathcal {E}}_{n,m}^\theta \) can be completed to full Hilbert modules providing \(C^*\)-algebra Morita equivalence, and they are Heisenberg modules with constant curvature connections that provide complete Morita equivalence).

References

  1. Connes, A., Rieffel, M.A.: Yang–Mills for noncommutative two-tori. Contemp. Math. 62, 237–266 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Connes, A., Douglas, M.R., Schwarz, A.S.: Noncommutative geometry and matrix theory: compactification on tori. JHEP 02, 003 (1998). arXiv:hep-th/9711162 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Seiberg, N., Witten, E.: String theory and noncommutative geometry. JHEP 09, 032 (1999). arXiv:hep-th/9908142 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Jurčo, B., Schupp, P., Wess, J.: NonAbelian noncommutative gauge theory via noncommutative extra dimensions. Nucl. Phys. B604, 148–180 (2001). arXiv:hep-th/0102129 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  5. Jurčo, B., Schupp, P., Wess, J.: Noncommutative line bundle and Morita equivalence. Lett. Math. Phys. 61, 171–186 (2002). arXiv:hep-th/0106110 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  6. Rieffel, M.A.: C\(^{\ast }\)-algebras associated with irrational rotations. Pac. J. Math. 93(2), 415–429 (1981). https://projecteuclid.org:443/euclid.pjm/1102736269

  7. Ho, P.-M.: Twisted bundle on quantum torus and BPS states in matrix theory. Phys. Lett. B 434, 41–47 (1998). arXiv:hep-th/9803166 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  8. Morariu, B., Zumino, B.: Super Yang–Mills on the noncommutative torus. In: Relativity, Particle Physics and Cosmology. Proceedings, Richard Arnowitt Fest, College Station, USA, 5–8 April 1998, pp. 53–69 (1998). arXiv:hep-th/9807198 [hep-th]

  9. Schwarz, A.S.: Morita equivalence and duality. Nucl. Phys. B 534, 720–738 (1998). arXiv:hep-th/9805034 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Asakawa, T., Kishimoto, I.: Comments on gauge equivalence in noncommutative geometry. JHEP 11, 024 (1999). arXiv:hep-th/9909139 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Suo, B., Wang, P., Zhao, L.: Ambiguities of the Seiberg–Witten map in the presence of matter field. Commun. Theor. Phys. 37, 571–574 (2002). arXiv:hep-th/0111006 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  12. Ulker, K., Yapiskan, B.: Seiberg–Witten maps to all orders. Phys. Rev. D 77, 065006 (2008). arXiv:0712.0506 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  13. Aschieri, P., Castellani, L.: Noncommutative gravity coupled to fermions: second order expansion via Seiberg–Witten map. JHEP 07, 184 (2012). arXiv:1111.4822 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Jurco, B., Moller, L., Schraml, S., Schupp, P., Wess, J.: Construction of nonAbelian gauge theories on noncommutative spaces. Eur. Phys. J. C 21, 383–388 (2001). arXiv:hep-th/0104153 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Aschieri, P., Jurčo, B., Schupp, P., Wess, J.: Noncommutative GUTs, standard model and C, P, T. Nucl. Phys. B 651, 45–70 (2003). arXiv:hep-th/0205214 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. ’t Hooft, G.: Some twisted selfdual solutions for the Yang–Mills equations on a hypertorus. Commun. Math. Phys. 81, 267–275 (1981)

    Article  ADS  MATH  Google Scholar 

  17. Taylor, W.: Lectures on D-branes, gauge theory and M(atrices). In: 2nd Trieste Conference on Duality in String Theory Trieste, Italy, 16–20 June 1997, pp. 192–271 (1997). arXiv:hep-th/9801182 [hep-th]. [192 (1997)]

  18. van Baal, P.: Some results for SU(N) gauge fields on the hypertorus. Commun. Math. Phys. 85, 529 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Ganor, O.J., Ramgoolam, S., Taylor, W.: Branes, fluxes and duality in M(atrix) theory. Nucl. Phys. B 492, 191–204 (1997). arXiv:hep-th/9611202 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Konechny, A., Schwarz, A.S.: Introduction to M(atrix) theory and noncommutative geometry. Phys. Rept. 360, 353–465 (2002). arXiv:hep-th/0012145 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are members of COST Action MP1405 QSpace - Quantum Structure of Spacetime and of INFN, CSN4, Iniziativa Specifica GSS, that have partially supported this project. This research has also a financial support of the Università del Piemonte Orientale. A.D. is grateful to Heriot-Watt University for hospitality. P.A. and A.D. acknowledge hospitality form LMU, Munich. P.A. is affiliated to INdAM, GNFM (Istituto Nazionale di Alta Matematica, Gruppo Nazionale di Fisica Matematica).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Aschieri.

Additional information

Communicated by Boris Pioline.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aschieri, P., Deser, A. Global Seiberg–Witten Maps for U(n)-Bundles on Tori and T-duality. Ann. Henri Poincaré 20, 3197–3227 (2019). https://doi.org/10.1007/s00023-019-00823-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00823-1

Navigation