Skip to main content
Log in

Indirect Measurements of a Harmonic Oscillator

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

The measurement of a quantum system becomes itself a quantum-mechanical process once the apparatus is internalized. That shift of perspective may result in different physical predictions for a variety of reasons. We present a model describing both system and apparatus and consisting of a harmonic oscillator coupled to a field. The equation of motion is a quantum stochastic differential equation. By solving it, we establish the conditions ensuring that the two perspectives are compatible, in that the apparatus indeed measures the observable it is ideally supposed to.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alsing, P., Milburn, G.J., Walls, D.F.: Quantum nondemolition measurements in optical cavities. Phys. Rev. A 37(8), 2970 (1988). https://doi.org/10.1103/PhysRevA.37.2970

    Article  ADS  Google Scholar 

  2. Ballesteros, M., Fraas, M., Fröhlich, J., Schubnel, B.: Indirect acquisition of information in quantum mechanics: states associated with tail events (2016). arxiv:1611.07895.pdf

  3. Ballesteros, M., Crawford, N., Fraas, M., Fröhlich, J., Schubnel, B.: Non-demolition measurements of observables with general spectra (2017). arXiv:1706.09584

  4. Ballesteros, M., Crawford, N., Fraas, M., Fröhlich, J., Schubnel, B.: Perturbation theory for weak measurements in quantum mechanics, I—systems with finite-dimensional state space (2017). arxiv: 1709.03149.pdf

  5. Barchielli, A., Lupieri, G.: Quantum stochastic calculus, operation valued stochastic processes and continual measurements in quantum mechanics. J. Math. Phys. (1985). https://doi.org/10.1063/1.526851

    MathSciNet  MATH  Google Scholar 

  6. Barchielli, A.: Measurement theory and stochastic differential equations in quantum mechanics. Phys. Rev. A (1986). https://doi.org/10.1103/PhysRevA.34.1642

    MathSciNet  Google Scholar 

  7. Barchielli, A.: Quantum stochastic differential equations: an application to the electron Shelving effect. J. Phys. A Math. Gen. (1987). https://doi.org/10.1088/0305-4470/20/18/034

    Google Scholar 

  8. Barchielli, A.: Input and output channels in quantum systems and quantum stochastic differential equations. In: Accardi, L., von Waldenfels, W. (eds.) Quantum Probability and Applications III. Lecture Notes in Mathematics. Springer, Berlin (1988)

    Google Scholar 

  9. Barchielli, A.: Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics. Quantum Opt. (1990). https://doi.org/10.1088/0954-8998/2/6/002

    MathSciNet  Google Scholar 

  10. Bauer, M., Bernard, D.: Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A (2011). https://doi.org/10.1103/PhysRevA.84.044103

    Google Scholar 

  11. Belavkin, V.: Quantum continual measurements and a posteriori collapse on CCR. Commun. Math. Phys. (1992). https://doi.org/10.1007/BF02097018

    MathSciNet  MATH  Google Scholar 

  12. Belavkin, V.: Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. (1992). https://doi.org/10.1016/0047-259X(92)90042-E

    ADS  MathSciNet  MATH  Google Scholar 

  13. Berman, G.P., Merkli, M., Sigal, I.M.: Decoherence and thermalization. Phys. Rev. Lett. (2007). https://doi.org/10.1103/PhysRevLett.98.130401

    MathSciNet  MATH  Google Scholar 

  14. Berman, G.P., Merkli, M., Sigal, I.M.: Resonance theory of decoherence and thermalization. Ann. Phys. (2008). https://doi.org/10.1016/j.aop.2007.04.013

    MathSciNet  MATH  Google Scholar 

  15. Blanchard, P., Fröhlich, J., Schubnel, B.: A “Garden of Forking Paths”—the qantum mechanics of histories of events. Nucl. Phys. B (2016). https://doi.org/10.1016/j.nuclphysb.2016.04.010

    MATH  Google Scholar 

  16. Bouten, L., Maassen, H., Kümmerer, B.: Constructing the Davies process of resonance fluorescence with quantum stochastic calculus. Opt. Spectrosc. (2003). https://doi.org/10.1134/1.1586743

    Google Scholar 

  17. Bouten, L., Guta, M., Maassen, H.: Stochastic Schrödinger equations. J. Phys. A Math. Gen. (2004). https://doi.org/10.1088/0305-4470/37/9/010

    MATH  Google Scholar 

  18. Brune, M., Haroche, S., Lefevre, V., Raimond, J.M., Zagury, N.: Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-sensitive detection. Phys. Rev. Lett. (1990). https://doi.org/10.1103/PhysRevLett.65.976

    Google Scholar 

  19. Bruneau, L., Joye, A., Merkli, M.: Asymptotics of repeated interaction quantum systems. J. Funct. Anal. (2006). https://doi.org/10.1016/j.jfa.2006.02.006

    MathSciNet  MATH  Google Scholar 

  20. Collet, M.J., Walls, D.F.: Quantum limits to light amplifiers. Phys. Rev. Lett. (1988). https://doi.org/10.1103/PhysRevLett.61.2442

    Google Scholar 

  21. Frigerio, A.: Covariant Markov dilations of quantum dynamical semigroups. Publ. RIMS Kyoto Univ. (1985). https://doi.org/10.2977/prims/1195179060

    MathSciNet  MATH  Google Scholar 

  22. Gardiner, C.W., Collet, M.J.: Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A (1985). https://doi.org/10.1103/PhysRevA.31.3761

    MathSciNet  Google Scholar 

  23. Gardiner, C.W.: Inhibition of atomic phase decays by squeezed light: a direct effect of squeezing. Phys. Rev. Lett. (1986). https://doi.org/10.1103/PhysRevLett.56.1917

    Google Scholar 

  24. Gredat, D., Dornic, I., Luck, J.M.: On an imaginary exponential functional of Brownian motion. J. Phys. A Math. Theor. (2011). https://doi.org/10.1088/1751-8113/44/17/175003

    MATH  Google Scholar 

  25. Guerlin, C., Bernu, J., Deléglise, S., Sayrin, C., Gleyzes, S., Kuhr, S., Brune, M., Raimond, J.M., Haroche, S.: Progressive field-state collapse and quantum non-demolition photon counting. Nature (2007). https://doi.org/10.1038/nature06057

    Google Scholar 

  26. Ghirardi, G.C., Pearle, P., Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A (1990). https://doi.org/10.1103/PhysRevA.42.78

    MathSciNet  Google Scholar 

  27. Hepp, K.: Quantum-theory of measurement and macroscopic observables. Helv. Phys. Acta 45, 237–248 (1972)

    Google Scholar 

  28. Hudson, R.L., Parthasarathy, K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. (1984). https://doi.org/10.1007/BF01258530

    MathSciNet  MATH  Google Scholar 

  29. Kac, M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. (1949). https://doi.org/10.1090/S0002-9947-1949-0027960-X

    MathSciNet  MATH  Google Scholar 

  30. Lane, A.S., Reid, M.D., Walls, D.F.: Quantum analysis of intensity fluctuations in the nondegenerate parametric oscillator. Phys. Rev. A (1988). https://doi.org/10.1103/PhysRevA.38.788

    Google Scholar 

  31. Lax, M.: Quantum noise. IV. Quantum theory of noise sources. Phys. Rev (1966). https://doi.org/10.1103/PhysRev.145.110

    Google Scholar 

  32. Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. (2001). https://doi.org/10.1103/RevModPhys.73.357

    MATH  Google Scholar 

  33. Milburn, G.J.: Quantum measurement theory of optical heterodyne detection. Phys. Rev. A (1987). https://doi.org/10.1103/PhysRevA.36.5271

    MathSciNet  Google Scholar 

  34. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983). https://doi.org/10.1007/978-1-4612-5561-1

    Book  MATH  Google Scholar 

  35. Peres, A., Rosen, N.: Macroscopic bodies in quantum theory. Phys. Rev. (1964). https://doi.org/10.1103/PhysRev.135.B1486

    MathSciNet  MATH  Google Scholar 

  36. Simon, B.: Functional Integration and Quantum Physics. Pure and Applied Mathematics. A Series of monographs and textbooks. American Mathematical Society (1979)

  37. Spehner, D., Haake, F.: Quantum measurements without macroscopic superpositions. Phys. Rev. A (2008). https://doi.org/10.1103/PhysRevA.77.052114

    MathSciNet  MATH  Google Scholar 

  38. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1996). https://doi.org/10.1007/978-3-642-61409-5

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the NCCR SwissMAP, funded by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Hänggli.

Additional information

Communicated by Alain Joye.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We shall derive (1.41.5). The commutation relation \([a, a^*]=1\) implies \({{\,\mathrm{i}\,}}[H_0,a]=-{{\,\mathrm{i}\,}}\omega a\) and thus \({{\,\mathrm{e}\,}}^{{{\,\mathrm{i}\,}}H_0 t}a{{\,\mathrm{e}\,}}^{-{{\,\mathrm{i}\,}}H_0 t}=a{{\,\mathrm{e}\,}}^{-{{\,\mathrm{i}\,}}\omega t}\). Since the relation remains true upon replacing a by \(a-\alpha \), and \(a^*\) accordingly, we also have

$$\begin{aligned} {{\,\mathrm{e}\,}}^{{{\,\mathrm{i}\,}}H t} a {{\,\mathrm{e}\,}}^{-{{\,\mathrm{i}\,}}H t}=\alpha +(a-\alpha ){{\,\mathrm{e}\,}}^{-{{\,\mathrm{i}\,}}\omega t}. \end{aligned}$$

By (1.1) that expression has to be multiplied from the left by its adjoint and then time averaged in order to obtain \({\overline{N}}_T\). As a result

$$\begin{aligned} {\overline{N}}_{\infty }=|\alpha |^2+(a^*-{\overline{\alpha }})(a-\alpha ), \end{aligned}$$

because terms \(\sim {{\,\mathrm{e}\,}}^{\pm {{\,\mathrm{i}\,}}\omega t}\) do not contribute to the limit. This proves (1.4), which in turn implies

$$\begin{aligned} \langle n |\, {\overline{N}}_{\infty }^2 \,| n \rangle =\langle n |\, (N+2|\alpha |^2)^2 \,| n \rangle +|\alpha |^2\langle n |\, a^*a+aa^* \,| n \rangle , \end{aligned}$$

because monomials \((a^*)^la^m\) with \(l\not =m\) have vanishing expectation. The first term on the r.h.s. equals \(\langle n |\, {\overline{N}}_{\infty } \,| n \rangle ^2\) and (1.5) follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraas, M., Graf, G.M. & Hänggli, L. Indirect Measurements of a Harmonic Oscillator. Ann. Henri Poincaré 20, 2937–2970 (2019). https://doi.org/10.1007/s00023-019-00817-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00817-z

Navigation