Skip to main content
Log in

A Renormalizable SYK-Type Tensor Field Theory

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper we introduce a simple field theoretic version of the Carrozza–Tanasa–Klebanov–Tarnopolsky (CTKT) “uncolored” holographic tensor model. It gives a more familiar interpretation to the previously abstract modes of the SYK or CTKT models in terms of momenta. We choose for the tensor propagator the usual Fermionic propagator of condensed matter, with a spherical Fermi surface, but keep the CTKT interactions. Hence, our field theory can also be considered as an ordinary condensed matter model with a non-local and non-rotational invariant interaction. Using a multi-scale analysis, we prove that this field theory is just renormalizable to all orders of perturbation theory in the ultraviolet regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambjorn, J., Görlich, A., Jurkiewicz, J., Loll, R.: Causal dynamical triangulations and the search for a theory of quantum gravity. Int. J. Mod. Phys. D 22, 1330019 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  2. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  3. Boulatov, D.V.: A model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629 (1992). hep-th/9202074

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. De Pietri, R., Freidel, L., Krasnov, K., Rovelli, C.: Barrett-Crane model from a Boulatov–Ooguri field theory over a homogeneous space. Nucl. Phys. B 574, 785 (2000). [hep-th/9907154]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Reisenberger, M., Rovelli, C.: Spin foams as Feynman diagrams. arXiv:gr-qc/0002083

  6. Freidel, L.: Group field theory: an overview. Int. J. Theor. Phys. 44, 1769 (2005). arXiv:hep-th/0505016

    Article  MathSciNet  MATH  Google Scholar 

  7. Oriti, D.: The microscopic dynamics of quantum space as a group field theory. arXiv:1110.5606

  8. Krajewski, T.: Group field theories. PoS QGQGS 2011, 005 (2011). arXiv:1210.6257 [gr-qc]

    Google Scholar 

  9. Oriti, D.: Group Field Theory and Loop Quantum Gravity. arXiv:1408.7112 [gr-qc]

  10. Oriti, D.: Group field theory as the 2nd quantization of loop quantum gravity. Class. Quantum Grav. 33(8), 085005 (2016). arXiv:1310.7786 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Di Francesco, P., Ginsparg, P.H., Zinn-Justin, J.: 2-D gravity and random matrices. Phys. Rep. 254, 1 (1995). arXiv:hep-th/9306153

    Article  ADS  MathSciNet  Google Scholar 

  12. Le Gall, J.-F., Miermont, G.: Scaling limits of random trees and planar maps. arXiv:1101.4856

  13. Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map I: the QLE(8/3,0) metric. arXiv:1507.00719 [math.PR]

  14. Ambjorn, J., Durhuus, B., Jonsson, T.: Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A 6, 1133 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Sasakura, N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6, 2613 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Gross, M.: Tensor models and simplicial quantum gravity in \(>\) 2-D. Nucl. Phys. Proc. Suppl. 25A, 144 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ambjorn, J.: Simplicial Euclidean and Lorentzian Quantum Gravity. arXiv:gr-qc/0201028

  18. Gurau, R.: Colored group field theory. Commun. Math. Phys. 304, 69 (2011). arXiv:0907.2582 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gurau, R.: The 1/N expansion of colored tensor models. Ann. Henri Poincaré 12, 829 (2011). [arXiv:1011.2726 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gurau, R., Rivasseau, V.: The 1/N expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95, 50004 (2011). [arXiv:1101.4182 [gr-qc]]

    Article  ADS  Google Scholar 

  21. Gurau, R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincaré 13, 399 (2012). arXiv:1102.5759 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Gurau, R.: Random Tensors. Oxford University Press, Oxford (2016). SIGMA special issue “Tensor Models, Formalism and Applications” (2016)

    Book  MATH  Google Scholar 

  23. Gurau, R., Ryan, J.P.: Colored tensor models—a review. SIGMA 8, 020 (2012). arXiv:1109.4812

    MathSciNet  MATH  Google Scholar 

  24. Bonzom, V., Gurau, R., Riello, A., Rivasseau, V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853, 174 (2011). [arXiv:1105.3122 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Rivasseau, V.: Random tensors and quantum gravity. SIGMA 12, 069 (2016). arXiv:1603.07278 [math-ph]

    MathSciNet  MATH  Google Scholar 

  26. Rivasseau, V.: The tensor track, IV. PoS CORFU 2015, 106 (2016). arXiv:1604.07860 [hep-th]

    Google Scholar 

  27. Kitaev, A.: A simple model of quantum holography. Talks at KITP, April 7, 2015 and May 27 (2015)

  28. Maldacena, J., Stanford, D.: Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94(10), 106002 (2016). arXiv:1604.07818 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  29. Polchinski, J., Rosenhaus, V.: The spectrum in the Sachdev-Ye-Kitaev model. JHEP 1604, 001 (2016). arXiv:1601.06768 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 1608, 106 (2016). arXiv:1503.01409 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Witten, E.: An SYK-Like Model Without Disorder. arXiv:1610.09758 [hep-th]

  32. Gurau, R.: The complete \(1/N\) expansion of a SYK-like tensor model. Nucl. Phys. B 916, 386 (2017). arXiv:1611.04032 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Murugan, J., Stanford, D., Witten, E.: More on supersymmetric and 2d analogs of the SYK model. JHEP 1708, 146 (2017). arXiv:1706.05362 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Carrozza, S., Tanasa, A.: \(O(N)\) random tensor models. Lett. Math. Phys. 106(11), 1531 (2016). arXiv:1512.06718 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Klebanov, I.R., Tarnopolsky, G.: Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models. Phys. Rev. D 95(4), 046004 (2017). arXiv:1611.08915 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  36. Klebanov, I.R., Tarnopolsky, G.: On large \(N\) limit of symmetric traceless tensor models. JHEP 1710, 037 (2017). arXiv:1706.00839 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Giombi, S., Klebanov, I.R., Tarnopolsky, G.: Bosonic tensor models at large \(N\) and small \(\epsilon \). Phys. Rev. D 96(10), 106014 (2017). arXiv:1707.03866 [hep-th]

    Article  ADS  Google Scholar 

  38. Bulycheva, K., Klebanov, I.R., Milekhin, A., Tarnopolsky, G.: Spectra of operators in large \(N\) tensor models. Phys. Rev. D 97(2), 026016 (2018). arXiv:1707.09347 [hep-th]

    Article  ADS  Google Scholar 

  39. Fu, W., Gaiotto, D., Maldacena, J., Sachdev, S.: Supersymmetric Sachdev-Ye-Kitaev models. Phys. Rev. D 95(2), 026009 (2017), Addendum: [Phys. Rev. D 95 no. 6, 069904 (2017)]. arXiv:1610.08917 [hep-th]

  40. Gross, D.J., Rosenhaus, V.: A generalization of Sachdev-Ye-Kitaev. JHEP 1702, 093 (2017). arXiv:1610.01569 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Itoyama, H., Mironov, A., Morozov, A.: Rainbow tensor model with enhanced symmetry and extreme melonic dominance. arXiv:1703.04983 [hep-th]

  42. Gross, D.J., Rosenhaus, V.: All point correlation functions in SYK. JHEP 1712, 148 (2017). arXiv:1710.08113 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Gurau, R.: The 1/\(N\) expansion of tensor models with two symmetric tensors. Commun. Math. Phys. 360(3), 985 (2018). arXiv:1706.05328 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Carrozza, S.: Large \(N\) limit of irreducible tensor models: \(O(N)\) rank-3 tensors with mixed permutation symmetry. J. High Energ. Phys. 2018, 39 (2018). arXiv:1803.02496 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  45. Benedetti, D., Carrozza, S., Gurau, R., Kolanowski, M.: The 1/\(N\) expansion of the symmetric traceless and the antisymmetric tensor models in rank three. High Energ. Phys. Theor. arXiv:1712.00249 [hep-th]

  46. Ben Geloun, J., Rivasseau, V.: A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318, 69 (2013). arXiv:1111.4997 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Ben Geloun, J., Rivasseau, V.: Addendum to ’A renormalizable 4-dimensional tensor field theory’. Commun. Math. Phys. 322, 957 (2013). arXiv:1209.4606 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Ben Geloun, J.: Renormalizable models in rank \(d\ge 2\) tensorial group field theory. Commun. Math. Phys. 332, 117 (2014). arXiv:1306.1201 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Kegeles, A., Oriti, D.: Continuous point symmetries in group field theories. J. Phys. A 50(12), 125402 (2017). arXiv:1608.00296 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Kegeles, A., Oriti, D.: Generalized conservation laws in non-local field theories. J. Phys. A 49(13), 135401 (2016). arXiv:1506.03320 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Ben Geloun, J., Toriumi, R.: Parametric representation of rank \(d\) tensorial group field theory: Abelian models with kinetic term \(\sum _{s}|p_s| + \mu \). J. Math. Phys. 56(9), 093503 (2015). arXiv:1409.0398 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Ousmane Samary, D., Perez-Sanchez, C.I., Vignes-Tourneret, F., Wulkenhaar, R.: Correlation functions of a just renormalizable tensorial group field theory: the melonic approximation. Class. Quantum Grav. 32(17), 175012 (2015). arXiv:1411.7213 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Ben Geloun, J., Livine, E.R.: Some classes of renormalizable tensor models. J. Math. Phys. 54, 082303 (2013). arXiv:1207.0416 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Ben Geloun, J., Ramgoolam, S.: Tensor models, Kronecker coefficients and permutation centralizer algebras. JHEP 1711, 092 (2017). arXiv:1708.03524 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  55. Ben Geloun, J., Toriumi, R.: Renormalizable Enhanced Tensor Field Theory: The quartic melonic case. arXiv:1709.05141 [hep-th]

  56. Ben Geloun, J., Martini, R., Oriti, D.: Functional renormalization group analysis of a tensorial group field theory on \({\mathbb{R}}^{3}\). Europhys. Lett. 112(3), 31001 (2015). arXiv:1508.01855 [hep-th]

    Article  ADS  Google Scholar 

  57. Carrozza, S.: Discrete renormalization group for SU(2) Tensorial group field theory. Ann. Inst. Henri Poincaré Comb. Phys. Interact. 2, 49–112 (2015). arXiv:1407.4615 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  58. Eichhorn, A., Koslowski, T.: Continuum limit in matrix models for quantum gravity from the functional renormalization group. Phys. Rev. D 88, 084016 (2013). arXiv:1309.1690 [gr-qc]

    Article  ADS  Google Scholar 

  59. Bonzom, V., Lionni, L., Tanasa, A.: Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders. J. Math. Phys. 58, 052301 (2017). arXiv:1702.06944 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Gurau, R.: Quenched equals annealed at leading order in the colored SYK model. EPL 119(3), 30003 (2017). arXiv:1702.04228 [hep-th]

    Article  ADS  Google Scholar 

  61. Rivasseau, V.: The tensor theory space. Fortsch. Phys. 62, 835 (2014). arXiv:1407.0284

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Rivasseau, V.: The Tensor Track: an Update. arXiv:1209.5284 [hep-th]

  63. Ramallo, A.V.: Introduction to the AdS/CFT correspondence. Springer Proc. Phys. 161, 411 (2015). arXiv:1310.4319 [hep-th]

    Article  MATH  Google Scholar 

  64. Douglas, M.R., Nekrasov, N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977 (2001). arXiv:hep-th/0106048

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Grosse, H., Wulkenhaar, R.: Noncommutative quantum field theory. Fortsch. Phys. 62, 797 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Grosse, H., Steinacker, H.: Renormalization of the noncommutative phi**3 model through the Kontsevich model. Nucl. Phys. B 746, 202 (2006). arXiv:hep-th/0512203

    Article  ADS  MATH  Google Scholar 

  68. Grosse, H., Wulkenhaar, R.: Renormalisation of phi**4 theory on noncommutative R**4 in the matrix base. Commun. Math. Phys. 256, 305 (2005). arXiv:hep-th/0401128

    Article  ADS  MATH  Google Scholar 

  69. Rivasseau, V., Vignes-Tourneret, F., Wulkenhaar, R.: Renormalization of noncommutative phi**4-theory by multi-scale analysis. Commun. Math. Phys. 262, 565 (2006). arXiv:hep-th/0501036

    Article  ADS  MATH  Google Scholar 

  70. Disertori, M., Gurau, R., Magnen, J., Rivasseau, V.: Vanishing of beta function of non commutative Phi**4(4) theory to all orders. Phys. Lett. B 649, 95 (2007). arXiv:hep-th/0612251

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Grosse, H., Wulkenhaar, R.: Self-dual noncommutative \(\phi ^4\)-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. arXiv:1205.0465

  72. Grosse, H., Sako, A., Wulkenhaar, R.: The \(\Phi ^3_4\) and \(\Phi ^3_6\) matricial QFT models have reflection positive two-point function. arXiv:1612.07584 [math-ph]

  73. Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of a SU(2) tensorial group field theory in three dimensions. Commun. Math. Phys. 330, 581 (2014). arXiv:1303.6772 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Carrozza, S., Lahoche, V., Oriti, D.: Renormalizable group field theory beyond melons: an example in rank four. Phys. Rev. D 96(6), 066007 (2017). arXiv:1703.06729 [gr-qc]

    Article  ADS  Google Scholar 

  75. Ben Geloun, J., Bonzom, V.: Radiative corrections in the Boulatov–Ooguri tensor model: the 2-point function. Int. J. Theor. Phys. 50, 2819 (2011). arXiv:1101.4294 [hep-th]

    Article  MATH  Google Scholar 

  76. Ben Geloun, J., Samary, D.O.: 3D tensor field theory: renormalization and one-loop \(\beta \)-functions. Ann. Henri Poincaré 14, 1599 (2013). arXiv:1201.0176 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Carrozza, S., Lahoche, V.: Asymptotic safety in three-dimensional SU(2) group field theory: evidence in the local potential approximation. Class. Quantum Grav. 34(11), 115004 (2017). arXiv:1612.02452 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Rivasseau, V.: Why are tensor field theories asymptotically free? Europhys. Lett. 111(6), 60011 (2015). arXiv:1507.04190 [hep-th]

    Article  ADS  Google Scholar 

  79. Ferrari, F.: The Large D Limit of Planar Diagrams. arXiv:1701.01171 [hep-th]

  80. Ferrari, F., Rivasseau, V., Valette, G.: A New Large N Expansion for General Matrix-Tensor Models. arXiv:1709.07366 [hep-th]

  81. Li, Y., Oriti, D., Zhang, M.: Group field theory for quantum gravity minimally coupled to a scalar field. Class. Quantum Grav. 34(19), 195001 (2017). arXiv:1701.08719 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton series in physics (Princeton Univ. Pr., Princeton, 1991)

  83. Rivasseau, V.: Constructive tensor field theory. SIGMA 12, 085 (2016). arXiv:1603.07312

    MathSciNet  MATH  Google Scholar 

  84. Lahoche, V.: Constructive tensorial group field theory II: the \(U(1)-T^4_4\) model. J. Phys. A 51(18), 185402 (2018). arXiv:1510.05051 [hep-th]

  85. Rivasseau, V., Vignes-Tourneret, F.: Constructive tensor field theory: The \(T^{4}_{4}\) model. arXiv:1703.06510 [math-ph]

  86. Feldman, J.: Renormalization Group and Fermionic Functional Integrals. CRM Monograph Series, vol. 16, published by the AMS (1999)

  87. Mastropietro, V.: Non-Perturbative Renormalization. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  88. Salmhofer, M.: Renormalization: An Introduction. Springer Berlin Heidelberg, Berlin (2010)

    MATH  Google Scholar 

  89. Prakash, S., Sinha, R.: A complex fermionic tensor model in \(d\) dimensions. JHEP 1802, 086 (2018). arXiv:1710.09357 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Benedetti, D., Carrozza, S., Gurau, R., Sfondrini, A.: Tensorial Gross-Neveu models. JHEP 1801, 003 (2018). arXiv:1710.10253 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Disertori, M., Magnen, J., Rivasseau, V.: Parametric cutoffs for interacting fermi liquids. Ann. Henri Poincaré 14, 925–945 (2013). arXiv:1105.4138 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Gurau, R.: A generalization of the Virasoro algebra to arbitrary dimensions. Nucl. Phys. B 852, 592 (2011). arXiv:1105.6072 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. Gallavotti, G., Nicoló, F.: Renormalization theory in four-dimensional scalar fields. I. Commun. Math. Phys. 100, 545 (1985)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

V. Rivasseau thanks N. Delporte, F. Ferrari, R. Gurau and G. Valette for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Rivasseau.

Additional information

Communicated by Abdelmalek Abdesselam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Geloun, J., Rivasseau, V. A Renormalizable SYK-Type Tensor Field Theory. Ann. Henri Poincaré 19, 3357–3395 (2018). https://doi.org/10.1007/s00023-018-0712-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0712-4

Navigation