Skip to main content
Log in

Semiclassical Szegö Limit of Eigenvalue Clusters for the Hydrogen Atom Zeeman Hamiltonian

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We prove a limiting eigenvalue distribution theorem (LEDT) for suitably scaled eigenvalue clusters around the discrete negative eigenvalues of the hydrogen atom Hamiltonian formed by the perturbation by a weak constant magnetic field. We study the hydrogen atom Zeeman Hamiltonian \({H_V(h,B) = (1/2)( - \imath h {{\nabla }} - {{\mathbf {A}}}(h))^2 - |\mathbf{x}|^{-1}}\), defined on \(L^2 (\mathbb {R}^3)\), in a constant magnetic field \({\mathbf {B}}(h) = {{\nabla }} \times {{\mathbf {A}}}(h)=(0,0,\epsilon (h)B)\) in the weak field limit \(\epsilon (h) \rightarrow 0\) as \(h\rightarrow {0}\). We consider the Planck’s parameter h taking values along the sequence \(h=1/(N+1)\), with \(N=0,1,2,\ldots \), and \(N\rightarrow \infty \). We prove a semiclassical \(N \rightarrow \infty \) LEDT of the Szegö-type for the scaled eigenvalue shifts and obtain both (i) an expression involving the regularized classical Kepler orbits with energy \(E=-1/2\) and (ii) a weak limit measure that involves the component \(\ell _3\) of the angular momentum vector in the direction of the magnetic field. This LEDT extends results of Szegö-type for eigenvalue clusters for bounded perturbations of the hydrogen atom to the Zeeman effect. The new aspect of this work is that the perturbation involves the unbounded, first-order, partial differential operator \(w(h, B) = \frac{(\epsilon (h)B)^2}{8} (x_1^2 + x_2^2) - \frac{ \epsilon (h)B}{2} hL_3 ,\) where the operator \(hL_3\) is the third component of the usual angular momentum operator and is the quantization of \(\ell _3\). The unbounded Zeeman perturbation is controlled using localization properties of both the hydrogen atom coherent states \({\Psi _{{\varvec{\alpha }},N}}\), and their derivatives \({L_3(h)\Psi _{{\varvec{\alpha }},N}}\), in the large quantum number regime \(N\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, J., Herbst, I.W., Simon, B.: Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J. 45(4), 847–883 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  2. Avron, J., Herbst, I.W., Simon, B.: Schrödinger operators with magnetic fields. III. Atoms in homogeneous magnetic field. Commun. Math. Phys. 79(4), 529–572 (1981)

    Article  ADS  MATH  Google Scholar 

  3. Bander, M., Itzykson, C.: Group theory and the hydrogen atom. I, II. Rev. Mod. Phys. 38(3), 330–345 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  4. Brummelhuis, R., Uribe, A.: A semi-classical trace formula for Schrödinger operators. Commun. Math. Phys. 136, 567–584 (1991)

    Article  ADS  MATH  Google Scholar 

  5. de Oliveira, C.R.: Intermediate Spectral Theory and Quantum Dynamics. Progress in Mathematics, vol. 54. Birkhausser, Basel (2009)

    Book  Google Scholar 

  6. Dozias, S.: Clustering for the spectrum of h-pseudodifferential operators with periodic flow on an energy surface. J. Funct. Anal. 145(2), 296–311 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fock, V.: Zur Theorie des Wasserstoffatoms. Z. Physik 98, 145 (1935)

    Article  ADS  MATH  Google Scholar 

  8. Froese, R., Waxler, R.: The spectrum of the hydrogen atom in an intense magnetic field. Rev. Math. Phys. 6(5), 699–832 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Guillemin, V.: Some spectral results for the Laplace operator with potential on the n-sphere. Adv. Math. 27(3), 273–286 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guillemin, V.: Some spectral results on rank one symmetric spaces. Adv. Math. 28(3), 129–137 (1978); An addendum to: “Some spectral results on rank one symmetric spaces”. Adv. Math. 28(2), 138–147 (1978)

  11. Helffer, B., Sjöstrand, J.: Puits de potentiel généralisés et asymptotique semi-classique. Ann. Inst. Henri Poincaré 41, 291–331 (1984)

    MATH  MathSciNet  Google Scholar 

  12. Hislop, P.D., Villegas-Blas, C.: Semiclassical Szegö limit of resonance clusters for the hydrogen atom Stark Hamiltonian. Asymptot. Anal. 79(1–2), 17–44 (2012)

    MATH  MathSciNet  Google Scholar 

  13. Karasev, M., Novikova, E.: Coherent transform of the spectral problem and algebras with nonlinear commutation relations. J. Math. Sci. 95(6), 2703–2798 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, New York (1988)

    Google Scholar 

  15. Moser, J.: Regularization of Kepler’s problem and the averaging method on a manifold. Commun. Pure Appl. Math. 23, 609–636 (1970)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  17. Thomas, L.E., Villegas-Blas, C.: Asymptotics of Rydberg states for the hydrogen atom. Commun. Math. Phys. 187, 623–645 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Uribe, A., Villegas-Blas, C.: Asymptotic of spectral clusters for a perturbation of the hydrogen atom. Commun. Math. Phys. 280, 123–144 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Villegas-Blas, C.: The Laplacian on the n-sphere, the hydrogen atom and the Bargmann space representation. Ph. D. thesis, University of Virginia (1996)

  20. Weinstein, A.: Asymptotics of eigenvalue clusters for the Laplacian plus potential. Duke Math. J. 44, 883–892 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

PDH was partially supported by NSF Grants 0803379 and 1103104 during the time this work was done. CV-B was partially supported by the projects PAPIIT-UNAM IN106812, PAPIIT-UNAM IN104015 and thanks the members of the Department of Mathematics of the University of Kentucky for their hospitality during a visit. MA-C was supported by a fellowship of DGAPA-UNAM, by Project PAPIIT-UNAM IN106812, and by CONACYT under the Grants 219631, CB-2013-01 and 258302, CB-2015-01. The authors want to thank the referees for their suggestions to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Hislop.

Additional information

Communicated by Jan Derezinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avendaño-Camacho, M., Hislop, P.D. & Villegas-Blas, C. Semiclassical Szegö Limit of Eigenvalue Clusters for the Hydrogen Atom Zeeman Hamiltonian. Ann. Henri Poincaré 18, 3933–3973 (2017). https://doi.org/10.1007/s00023-017-0618-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0618-6

Navigation