Skip to main content
Log in

Bounded Energy Waves on the Black Hole Interior of Reissner–Nordström–de Sitter

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Motivated by the strong cosmic censorship conjecture, in the presence of a cosmological constant, we consider solutions of the scalar wave equation \(\Box _g\phi =0\) on fixed subextremal Reissner–Nordström–de Sitter backgrounds \(({\mathcal M}, g)\), without imposing symmetry assumptions on \(\phi \). We provide a sufficient condition, in terms of surface gravities and a parameter for an exponential decaying Price Law, for a local energy of the waves to remain bounded up to the Cauchy horizon. The energy we consider controls, in particular, regular transverse derivatives at the Cauchy horizon; this allows us to extend the solutions with bounded energy, to the Cauchy horizon, as functions in \(C^0\cap H^1_\mathrm{loc}\). Our results correspond to another manifestation of the potential breakdown of strong cosmic censorship in the positive cosmological constant setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Angelopoulos, Y., Aretakis, S., Gajic, D.: Late-time asymptotics for the wave equation on spherically symmetric, stationary spacetimes (2016). arXiv:1612.01566

  2. Aretakis, S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations I. Commun. Math. Phys. 307, 17–63 (2011). arXiv:1110.2007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Aretakis, S.: Lecture Notes on General Relativity. Columbia University, New York (2013)

    MATH  Google Scholar 

  4. Brady, P.R., Chambers, C.M., Krivan, W., Laguna, P.: Telling tails in the presence of a cosmological constant. Phys. Rev. D 55, 12 (1997)

    Article  Google Scholar 

  5. Brady, P.R., Moss, I.G., Myers, R.C.: Cosmic censorship: as strong as ever. Phys. Rev. Lett. 80, 16 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bony, J.F., Häfner, D.: Decay and non-decay of the local energy for the wave equation in the De Sitter–Schwarzschild metric. Commun. Math. Phys. 282(3), 697–719 (2008). arXiv:0706.0350

    Article  ADS  MATH  Google Scholar 

  7. Chambers, C.M.: The Cauchy horizon in black hole-de Sitter spacetimes (1997). arXiv:gr-qc/9709025

  8. Christodoulou, D.: The Formation of Black Holes in General Relativity. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2009). arXiv:0805.3880

    Book  MATH  Google Scholar 

  9. Chruściel, P.T.: On Uniqueness in the Large of Solutions of Einstein’s Equations (“Strong Cosmic Censorship”). Proceedings of the CMA, vol. 27 (1991)

  10. Costa, J .L., Girão, P .M., Natário, J., Silva, J .D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 1: well posedness and breakdown criterion. Class. Quant. Gravity 32, 015017 (2015). arXiv:1406.7261

    Article  ADS  MATH  Google Scholar 

  11. Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 2: structure of the solutions and stability of the Cauchy horizon. Commun. Math. Phys. 339, 3 (2015). arXiv:1406.7253

    Article  MathSciNet  Google Scholar 

  12. Costa, J.L., Girão, P.M., Natário, J., Silva, J.D.: On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant. Part 3: mass inflation and extendibility of the solutions. Ann. PDE 3, 8 (2014). doi:10.1007/s40818-017-0028-6. arXiv:1406.7245

    Article  MathSciNet  Google Scholar 

  13. Dafermos, M.: Stability and instability of the Cauchy horizon for the spherically symmetric Einstein–Maxwell-scalar field equations. Ann. Math. Second Ser. 158(3), 875–928 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dafermos, M.: The interior of charged black holes and the problem of uniqueness in general relativity. Commun. Pure Appl. Math. 58, 0445–0504 (2005)

    Article  MathSciNet  Google Scholar 

  15. Dafermos, M.: Black holes without spacelike singularities. Commun. Math. Phys. 332, 2 (2014). arXiv:1201.1797v1

    Article  MathSciNet  MATH  Google Scholar 

  16. Dafermos, M., Rodnianski, I.: The wave equation on Schwarzschild–de Sitter spacetimes (2007). arXiv:0709.2766

  17. Dafermos, M., Rodnianski, I.: The redshift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62(7), 859–919 (2009). arXiv:gr-qc/0512119

    Article  MATH  Google Scholar 

  18. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. In: Evolution Equations. Clay Mathematics Proceedings, vol. 17, pp. 97–205. American Mathematical Society, Providence (2013). arXiv:0811.0354

  19. Dafermos, M., Shlapentokh-Rothman, Y.: Time-translation invariance of scattering maps and blue-shift instabilities on Kerr black hole spacetimes. Commun. Math. Phys. 350, 985–1016 (2017). arXiv:1512.08260

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Dyatlov, S.: Asymptotics of linear waves and resonances with applications to black holes. Commun. Math. Phys. 335(3), 1445–1485 (2015). arXiv:1305.1723

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Earman, J.: Bangs, Crunches, Whimpers, and Shrieks. Singularities and Acausalities in Relativistic Spacetimes. Oxford University Press, Oxford (1995)

    Google Scholar 

  22. Franzen, A.: Boundedness of massless scalar waves on Reissner–Nordström interior backgrounds. Commun. Math. Phys. 343, 2 (2016). arXiv:1407.7093

    Article  MATH  Google Scholar 

  23. Gajic, D.: Linear waves in the interior of extremal black holes I. Commun. Math. Phys. 1–54 (2016). arXiv:1509.06568

  24. Gajic, D.: Linear waves in the interior of extremal black holes II (2015). arXiv:1512.08953

  25. Hintz, P.: Non-linear stability of the Kerr–Newman–de Sitter family of charged black holes (2017). arXiv:1612.04489

  26. Hintz, P., Vasy, A.: Analysis of linear waves near the Cauchy horizon of cosmological black holes (2015). arXiv:1512.08004

  27. Hintz, P., Vasy, A.: The global non-linear stability of the Kerr–de Sitter family of black holes (2016). arXiv:1606.04014

  28. Hiscock, W.A.: Evolution of the interior of a charged black hole. Phys. Lett. A 83, 110–112 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  29. Klainerman, S.: Uniform decay estimates and the lorentz invariance of the classical wave equation. Commun. Pure Appl. Math. 38(3), 321–332 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Luk, J.: On weak null singularities in general relativity (2013). arXiv:1311.4970v1

  31. Luk, J., Oh, S.-J.: Proof of linear instability of Reissner–Nordström Cauchy horizon under scalar perturbations. Duke Math. J. 166(3), 437–493 (2017). arXiv:1501.04598

    Article  MathSciNet  MATH  Google Scholar 

  32. Luk, J., Oh, S.-J.: Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data I. The interior of the black hole region (2017). arXiv:1702.05715

  33. Luk, J., Oh, S.-J.: Strong cosmic censorship in spherical symmetry for two-ended asymptotically flat initial data II. The exterior of the black hole region (2017). arXiv:1702.05716

  34. Luk, J., Sbierski, J.: Instability results for the wave equation in the interior of Kerr black holes. J. Funct. Anal. 271(7), 1948–1995 (2016). arXiv:1512.08259

    Article  MathSciNet  MATH  Google Scholar 

  35. Ori, A.: Inner structure of a charged black hole: an exact mass-inflation solution. Phys. Rev. Lett. 67, 789–792 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Poisson, E., Israel, W.: Internal structure of black holes. Phys. Rev. D 41, 1796–1809 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  37. Ringström, H.: The Cauchy Problem in General Relativity. European Mathematical Society, Zürich (2000)

    MATH  Google Scholar 

  38. Ringström, H.: On the Topology and Future Stability of the Universe. Oxford Mathematical Monographs, Oxford (2013)

    Book  MATH  Google Scholar 

  39. Sbierski, J.: On the initial value problem in general relativity and wave propagation in black-hole spacetimes. Ph.D. Thesis (2014)

  40. Schlue, V.: Global results for linear waves on expanding Kerr and Schwarzschild de Sitter cosmologies. Commun. Math. Phys. 334(2), 977–1023 (2013). arXiv:1207.6055

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Schlue, V.: Decay of the Weyl curvature in expanding black hole cosmologies (2013). arXiv:1610.04172

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João L. Costa.

Additional information

Communicated by James A. Isenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, J.L., Franzen, A.T. Bounded Energy Waves on the Black Hole Interior of Reissner–Nordström–de Sitter. Ann. Henri Poincaré 18, 3371–3398 (2017). https://doi.org/10.1007/s00023-017-0592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0592-z

Navigation