Advertisement

Annales Henri Poincaré

, Volume 16, Issue 2, pp 569–608 | Cite as

Integrable QFT and Longo–Witten Endomorphisms

  • Marcel Bischoff
  • Yoh Tanimoto
Open Access
Article

Abstract

Our previous constructions of Borchers triples are extended to massless scattering with nontrivial left and right components. A massless Borchers triple is constructed from a set of left–left, right–right and left–right scattering functions. We find a correspondence between massless left–right scattering S-matrices and massive block diagonal S-matrices. We point out a simple class of S-matrices with examples. We study also the restriction of two-dimensional models to the lightray. Several arguments for constructing strictly local two-dimensional nets are presented and possible scenarios are discussed.

Keywords

Baxter Equation Standard Pair Strict Locality Translation Covariance Standard Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdalla, E., Abdalla, M., Cristina, B., Rothe, K.D.: Non-perturbative methods in 2 dimensional quantum field theory, 2nd edn. World Scientific Publishing Co. Inc., River Edge (2001)Google Scholar
  2. 2.
    Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91(2), 167–197 (2010)zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    Araki H., Zsidó L.: Extension of the structure theorem of Borchers and its application to half-sided modular inclusions. Rev. Math. Phys. 17(5), 491–543 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bernard D.: On symmetries of some massless 2D field theories. Phys. Lett. B 279(1-2), 78–86 (1992)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Bernard D., LeClair A.: The quantum double in integrable quantum field theory. Nucl. Phys. B 399(2–3), 709–748 (1993)zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Bischoff, M.: Construction of models in low-dimensional quantum field theory using operator algebraic methods. Ph.D. Thesis, Università di Roma “Tor Vergata” (2012)Google Scholar
  7. 7.
    Bischoff M., Tanimoto Y.: Construction of wedge-local nets of observables through Longo–Witten endomorphisms. II. Comm. Math. Phys. 317(3), 667–695 (2013)zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Borchers H.-J.: The CPT-theorem in two-dimensional theories of local observables. Comm. Math. Phys. 143(2), 315–332 (1992)zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Borchers H.J.: On the lattice of subalgebras associated with the principle of half-sided modular inclusion. Lett. Math. Phys. 40(4), 371–390 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Bostelmann H., Lechner G., Morsella G.: Scaling limits of integrable quantum field theories. Rev. Math. Phys. 23(10), 1115–1156 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Brunetti, R., Guido, D., Longo, R.: Modular localization and Wigner particles. Rev. Math. Phys. 14(7–8), 759–785 (2002). Dedicated to Professor Huzihiro Araki on the occasion of his 70th birthdayGoogle Scholar
  12. 12.
    Buchholz D.: Collision theory for waves in two dimensions and a characterization of models with trivial S-matrix. Comm. Math. Phys. 45(1), 1–8 (1975)Google Scholar
  13. 13.
    Buchholz D., Lechner G.: Modular nuclearity and localization. Ann. Henri Poincaré 5(6), 1065–1080 (2004)zbMATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Chernoff P.R.: Note on product formulas for operator semigroups. J. Funct. Anal. 2, 238–242 (1968)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Chernoff P.R.: Semigroup product formulas and addition of unbounded operators. Bull. Am. Math. Soc. 76, 395–398 (1970)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Chernoff, P.R.: Product formulas, nonlinear semigroups, and addition of unbounded operators. American Mathematical Society, Providence, R.I. (1974). Memoirs of the American Mathematical Society, No. 140Google Scholar
  17. 17.
    Delfino G., Mussardo G., Simonetti P.: Correlation functions along a massless flow. Phys. Rev. D 51, R6620–R6624 (1995)CrossRefADSGoogle Scholar
  18. 18.
    Driessler W., Fröhlich J.: The reconstruction of local observable algebras from the euclidean green’s functions of relativistic quantum field theory. Annales de L’Institut Henri Poincaré Section Physique Théorique 27, 221–236 (1977)zbMATHADSGoogle Scholar
  19. 19.
    Dybalski W., Tanimoto Y.: Asymptotic completeness in a class of massless relativistic quantum field theories. Comm. Math. Phys. 305(2), 427–440 (2011)zbMATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Estienne B., Pasquier V., Santachiara R., Serban D.: Conformal blocks in Virasoro and W theories: duality and the Calogero–Sutherland model. Nucl. Phys. B 860(3), 377–420 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Fendley, P., Saleur, H.: Massless integrable quantum field theories and massless scattering in 1 + 1 dimensions. In: High energy physics and cosmology (Trieste, 1993), volume 10 of ICTP Series in Theoretical Physics, pp. 301–332. World Science Publishing, River Edge (1994). arXiv:hep-th/9310058v1
  22. 22.
    Guido D., Longo R., Wiesbrock H.-W.: Extensions of conformal nets and superselection structures. Comm. Math. Phys. 192(1), 217–244 (1998)zbMATHMathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Haag, R.: Local quantum physics. Texts and Monographs in Physics, 2nd edn. Springer, Berlin (1996). Fields, particles, algebrasGoogle Scholar
  24. 24.
    Lechner G.: Polarization-free quantum fields and interaction. Lett. Math. Phys. 64(2), 137–154 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Lechner, G.: On the construction of quantum field theories with factorizing S-matrices. Ph.D. Thesis, Universität Göttingen (2006). arXiv:math-ph/0611050
  26. 26.
    Lechner G.: Construction of quantum field theories with factorizing S-matrices. Comm. Math. Phys. 277(3), 821–860 (2008)Google Scholar
  27. 27.
    Lechner G., Schlemmer J., Tanimoto Y.: On the equivalence of two deformation schemes in quantum field theory. Lett. Math. Phys. 103(4), 421–437 (2013)zbMATHMathSciNetCrossRefADSGoogle Scholar
  28. 28.
    Lechner G., Schützenhofer C.: Towards an operator-algebraic construction of integrable global gauge theories. Ann. Henri Poincaré 14(4), 645–678 (2014)CrossRefGoogle Scholar
  29. 29.
    Longo, R.: Real Hilbert subspaces, modular theory, SL(2, R) and CFT. In: Von Neumann algebas in Sibiu Conference Proceedings, pp. 33–91. Theta, Bucharest (2008)Google Scholar
  30. 30.
    Longo R., Witten E.: An algebraic construction of boundary quantum field theory. Comm. Math. Phys. 303(1), 213–232 (2011)zbMATHMathSciNetCrossRefADSGoogle Scholar
  31. 31.
    MacKay N.J.: Introduction to Yangian symmetry in integrable field theory. Int. J. Mod. Phys. A 20(30), 7189–7217 (2005)zbMATHMathSciNetCrossRefADSGoogle Scholar
  32. 32.
    Mejean P., Smirnov F.A.: Form factors for principal chiral field model with Wess-Zumino-Novikov-Witten term. Int. J. Mod. Phys. A 12(19), 3383–3395 (1997)zbMATHMathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Nakayashiki A.: The chiral space of local operators in SU(2)-invariant Thirring model. Comm. Math. Phys. 245(2), 279–296 (2004)zbMATHMathSciNetCrossRefADSGoogle Scholar
  34. 34.
    Quella, T.: Formfactors and locality in integrable models of quantum field theory in 1+1 dimensions. Diploma thesis, Freie Universität Berlin (1999)Google Scholar
  35. 35.
    Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1975)Google Scholar
  36. 36.
    Reed, M., Simon, B.: Methods of modern mathematical physics. I, 2nd edn. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1980). Functional analysisGoogle Scholar
  37. 37.
    Schroer B.: Modular localization and the bootstrap-formfactor program. Nucl. Phys. B 499(3), 547–568 (1997)zbMATHMathSciNetCrossRefADSGoogle Scholar
  38. 38.
    Schroer B.: Modular wedge localization and the d = 1 + 1 formfactor program. Ann. Phys. 275(2), 190–223 (1999)Google Scholar
  39. 39.
    Schroer B.: Constructive proposals for QFT based on the crossing property and on lightfront holography. Ann. Phys. 319(1), 48–91 (2005)zbMATHMathSciNetCrossRefADSGoogle Scholar
  40. 40.
    Smirnov, F.A.: Form factors in completely integrable models of quantum field theory, volume 14 of Advanced Series in Mathematical Physics. World Scientific Publishing Co. Inc., River Edge (1992)Google Scholar
  41. 41.
    Takesaki, M.: Theory of operator algebras. II, volume 125 of Encyclopaedia of Mathematical Sciences. Springer, Berlin (2003) Operator Algebras and Non-commutative Geometry, 6Google Scholar
  42. 42.
    Tanimoto Y.: Construction of wedge-local nets of observables through Longo–Witten endomorphisms. Comm. Math. Phys. 314(2), 443–469 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar
  43. 43.
    Tanimoto Y.: Noninteraction of waves in two-dimensional conformal field theory. Comm. Math. Phys. 314(2), 419–441 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar
  44. 44.
    Tanimoto, Y.: Construction of two-dimensional quantum field models through Longo–Witten endomorphisms. To appear in Forum of Mathematics, Sigma (2014)Google Scholar
  45. 45.
    Wiesbrock H.-W.: Half-sided modular inclusions of von Neumann algebras. Comm. Math. Phys. 157(1), 83–92 (1993)zbMATHMathSciNetCrossRefADSGoogle Scholar
  46. 46.
    Wiesbrock H.-W.: Modular intersections of von Neumann algebras in quantum field theory. Comm. Math. Phys. 193(2), 269–285 (1998)zbMATHMathSciNetCrossRefADSGoogle Scholar
  47. 47.
    Zamolodchikov A.B., Zamolodchikov A1.B.: Massless factorized scattering and sigma models with topological terms. Nucl. Phys. B 379(3), 602–623 (1992)MathSciNetCrossRefADSGoogle Scholar
  48. 48.
    Zinn-Justin, J.: Quantum field theory and critical phenomena, volume 85 of International Series of Monographs on Physics, 2nd edn. The Clarendon Press Oxford University Press, New York (1993). Oxford Science PublicationsGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität GöttingenGöttingenGermany
  2. 2.Graduate School of Mathematical SciencesThe University of TokyoTokyoJapan
  3. 3.Institut für Theoretische PhysikUniversität GöttingenGöttingenGermany

Personalised recommendations