Advertisement

Journal of Geometry

, 109:26 | Cite as

On standard two-intersection sets in PG(rq)

  • Fulvio Zuanni
Article

Abstract

In this paper, we extend and analyze in a finite projective space of any dimension the notion of standard two-intersection sets previously introduced in the projective plane by Penttila and Royle (Des Codes Cryptogr 6:229–245, 1995), see also Blokhuis and Lavrauw (J Combin Theory Ser A 99:377–382, 2002). Moreover, given a pair of suitable distinct standard two-intersection sets in a finite projective space it is possible to get further standard two-intersection sets by applying elementary set-theoretical operations to the elements of the pair.

Keywords

Two-intersection sets Two-character sets Sets of type (\(m, n\)

Mathematics Subject Classification

51E20 05B25 

References

  1. 1.
    Blokhuis, A., Lavrauw, M.: On two-intersection sets with respect to hyperplanes in projective spaces. J. Combin. Theory Ser. A 99, 377–382 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cossidente, A., Durante, N., Marino, G., Penttila, T., Siciliano, A.: The geometry of some two-character sets. Des. Codes Cryptogr. 46, 231–241 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    De Finis, M.: On \(k\)-sets in \(PG(r, q)\), \(r\ge 3\). Rend. Mat. 3, 447–454 (1983)Google Scholar
  4. 4.
    De Finis, M.: On \(k\)-sets of type \((m, n)\) in \(PG(3, q)\) with respect to planes. ARS Combin. 21, 119–136 (1986)Google Scholar
  5. 5.
    Hamilton, N., Penttila, T.: Sets of type \((a, b)\) from subgroups of \(\Gamma L(1, p^R)\). J. Algebr. Combin. 13, 67–76 (2001)Google Scholar
  6. 6.
    Lane-Harvard, L., Penttila, T.: Some strongly regular graphs with the parameters of Paley graphs. Australas. J. Combin. 61, 138–141 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Penttila, T., Royle, G.F.: Sets of type \((m, n)\) in the affine and projective planes of order nine. Des. Codes Cryptogr. 6, 229–245 (1995)Google Scholar
  8. 8.
    Scafati, M.T.: Sui \(k\)-insiemi di uno spazio di Galois \(S_{r,q}\) a due soli caratteri nella dimensione \(d\). Rend. Accad. Naz. Lincei 60(8), 782–788 (1976)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial and Information Engineering and EconomicsUniversity of L’AquilaL’AquilaItaly

Personalised recommendations