Advertisement

Journal of Geometry

, 109:23 | Cite as

AG codes and AG quantum codes from cyclic extensions of the Suzuki and Ree curves

  • Maria Montanucci
  • Marco Timpanella
  • Giovanni Zini
Article
  • 36 Downloads

Abstract

We investigate several types of linear codes constructed from two families of maximal curves over finite fields recently constructed by Skabelund as cyclic covers of the Suzuki and Ree curves. Plane models for such curves are provided, and the Weierstrass semigroup at an \(\mathbb {F}_{q}\)-rational point is shown to be symmetric.

Keywords

Suzuki curve Ree curve AG code Quantum code Convolutional code Code automorphisms 

Mathematics Subject Classification

94B27 

References

  1. 1.
    Bartoli, D., Montanucci, M., Zini, G.: AG codes and AG quantum codes from the GGS curve. Des. Codes Cryptogr. (2017).  https://doi.org/10.1007/s10623-017-0450-5
  2. 2.
    Bartoli, D., Montanucci, M., Zini, G.: Multi point AG codes on the GK maximal curve. Des. Codes Cryptogr. 86(1), 161–177 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Campillo, A., Farrán, J.I.: Computing Weierstrass semigroups and the Feng–Rao distance from singular plane models. Finite Fields Appl. 6, 71–92 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Castellanos, A.S., Tizziotti, G.C.: Two-point AG codes on the GK maximal curves. IEEE Trans. Inf. Theory 62(2), 681–686 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carvalho, C., Kato, T.: On Weierstrass semigroups and sets: a review with new results. Geometriae Dedicata 139(1), 195–210 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carvalho, C., Torres, F.: On Goppa codes and Weierstrass gaps at several points. Des. Codes Cryptogr. 35(2), 211–225 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    de Assis, F.M., La Guardia, G.G., Pereira, F.R.F.: New Convolutional Codes Derived from Algebraic Geometry Codes. Preprint. arXiv:1612.07157
  8. 8.
    Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. Math. 103, 103–161 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Eid, A., Duursma, I.: Smooth embeddings for the Suzuki and Ree curves. In: Ballet, S., Perret, M., Zaytsev, A. (eds.) Algorithmic Arithmetic, Geometry, and Coding Theory. Contemporary Mathematics, vol. 637, pp. 251–291. American Mathematical Society, Providence (2015)Google Scholar
  10. 10.
    Duursma, I., Kirov, R.: Improved two-point codes on Hermitian curves. IEEE Trans. Inf. Theory 57(7), 4469–4476 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fanali, S., Giulietti, M.: One-point AG codes on the GK maximal curves. IEEE Trans. Inf. Theory 56(1), 202–210 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Garcia, A., Güneri, C., Stichtenoth, H.: A generalization of the Giulietti–Korchmáros maximal curve. Adv. Geom. 10(3), 427–434 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Giulietti, M., Korchmáros, G.: On automorphism groups of certain Goppa codes. Des. Codes Cryptogr. 47, 177–190 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Giulietti, M., Korchmáros, G.: A new family of maximal curves over a finite field. Math. Ann. 343, 229–245 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Giulietti, M., Korchmáros, G., Torres, F.: Quotient curves of the Suzuki curve. Acta Arith. 122, 245–274 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Giulietti, M., Montanucci, M., Quoos, L., Zini, G.: On some Galois covers of the Suzuki and Ree curves. J. Number Theory (2018).  https://doi.org/10.1016/j.jnt.2017.12.005
  17. 17.
    Goppa, V.D.: Codes on algebraic curves. Dokl. Akad. NAUK SSSR 259(6), 1289–1290 (1981)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Goppa, V.D.: Algebraic-geometric codes. Izv. Akad. Nauk SSSR Ser. Mat. 46(4), 75–91 (1982)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Heegard, C., Little, J., Saints, K.: Systematic encoding via Gröbner bases for a class of algebraic-geometric Goppa codes. IEEE Trans. Inf. Theory 41, 1752–1761 (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves Over a Finite Field. Princeton University Press, Princeton (2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    Høholdt, T., van Lint, J.H., Pellikaan, R.: Algebraic geometry codes. In: Pless, V.S., Huffman, W.C., Brualdi, R.A. (eds.) Handbook of Coding Theory, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998)Google Scholar
  22. 22.
    Homma, M.: The Weierstrass semigroup of a pair of points on a curve. Arch. Math. 67, 337–348 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Homma, M., Kim, S.J.: Goppa codes with Weierstrass pairs. J. Pure Appl. Algebra 162, 273–290 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Homma, M., Kim, S.J.: Toward the determination of the minimum distance of two-point codes on a Hermitian curve. Des. Codes Cryptogr. 37(1), 111–132 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Homma, M., Kim, S.J.: The complete determination of the minimum distance of two-point codes on a Hermitian curve. Des. Codes Cryptogr. 40(1), 5–24 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Homma, M., Kim, S.J.: The two-point codes on a Hermitian curve with the designed minimum distance. Des. Codes Cryptogr. 38(1), 55–81 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Joyner, D.: An error-correcting codes package. SIGSAM Commun. Comput. Algebra 39(2), 65–68 (2005)zbMATHGoogle Scholar
  28. 28.
    Joyner, D., Ksir, A.: Automorphism groups of some AG codes. IEEE Trans. Inf. Theory 52(7), 3325–3329 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Karanikolopoulos, S., Kontogeorgis, A.: Automorphisms of curves and Weierstrass semigroups. arXiv:1005.2871
  30. 30.
    Kim, S.J.: On the index of the Weierstrass semigroup of a pair of points on a curve. Arch. Math. 62(1), 73–82 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kirfel, C., Pellikaan, R.: The minimum distance of codes in an array coming from telescopic semigroups. IEEE Trans. Inf. Theory 41, 1720–1732 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    La Guardia, G.G., Pereira, F.R.F.: Good and asymptotically good quantum codes derived from algebraic geometry codes. Quantum Inf. Process. 16(6), Art. 165 (2017)Google Scholar
  33. 33.
    Lewittes, J.: Genus and gaps in function fields. J. Pure Appl. Algebra 58, 29–44 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Lundell, B., McCullough, J.: A generalized floor bound for the minimum distance of geometric Goppa codes. J. Pure Appl. Algebra 207, 155–164 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Matthews, G.L.: Weierstrass pairs and minimum distance of Goppa codes. Des. Codes Cryptogr. 22, 107–121 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Matthews, G.L.: Codes from the Suzuki function field. IEEE Trans. Inf. Theory 50(12), 3298–3302 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Meagher, S., Top, J.: Twists of genus three curves over finite fields. Finite Fields Appl. 16, 347–368 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Montanucci, M., Timapanella, M., Zini, G.: AG codes and AG quantum codes from cyclic extensions of the Suzuki and Ree curves, preliminary version. arXiv:1709.05979
  39. 39.
    Munuera, C., Tenório, W., Torres, F.: Quantum error-correcting codes from algebraic geometry codes of Castle type. Quantum Inf. Process. 15(10), 4071–4088 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Munuera, C., Sepulveda, A., Torres, F.: Castle curves and codes. Adv. Math. Commun. 3(4), 399–408 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Pedersen, J.P.: A Function Field Related to the Ree Group. Coding Theory and Algebraic Geometry. Lectures Notes in Mathematics, vol. 1518, pp. 122–132. Springer, Berlin (1992)Google Scholar
  42. 42.
    Rosenthal, J., Smarandache, R.: Maximum distance separable convolutional codes. Appl. Algebra Eng. Commun. Comput. 10, 15–32 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Sepúlveda, A., Tizziotti, G.: Weierstrass semigroup and codes over the curve \(y^q + y = x^{q^r} + 1\). Adv. Math. Commun. 8(1), 67–72 (2014)Google Scholar
  44. 44.
    Skabelund, D.C.: New maximal curves as ray class fields over Deligne–Lusztig curves. Proc. Am. Math. Soc. 146(2), 525–540 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Stichtenoth, H.: A note on Hermitian codes over \(GF(q^2)\). IEEE Trans. Inf. Theory 34(5), 1345–1348 (1988)Google Scholar
  46. 46.
    Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (2009)zbMATHGoogle Scholar
  47. 47.
    Tiersma, H.J.: Remarks on codes from Hermitian curves. IEEE Trans. Inform. Theory 33, 605–609 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Yang, K., Kumar, P.V.: On the true minimum distance of Hermitian codes. In: Stichtenoth, H., Tsfasman, M.A. (eds.) Coding Theory and Algebraic Geometry (Luminy, 1991). Lecture Notes in Mathematics, vol. 1518, pp. 99–107. Springer, Berlin (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Università degli Studi della BasilicataPotenzaItaly
  2. 2.Università degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations