Skip to main content
Log in

An Efficient Second-Order Algorithm Upon MAC Scheme for Nonlinear Incompressible Darcy–Brinkman–Forchheimer Model

  • Original Research
  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, the Marker and Cell scheme based on a two-grid algorithm is proposed for the two-dimensional incompressible Darcy–Brinkman–Forchheimer equations in porous media. The motivation of the two-grid Marker and Cell algorithm is figuring out a nonlinear equation on a coarse grid with mesh size H and a linear equation on a fine grid with mesh size h. A small positive parameter \(\varepsilon \) is introduced. By using it, the non-differentiable nonlinear term can be transformed into the term which is twice continuously differentiable. The error estimates of the velocity and pressure in the \(L^2\) norms are obtained, which show \(O(\varepsilon +H^4+h^2)\). Second-order accuracy for some terms of velocity in the \(H^1\) norms is also obtained. Several numerical experiments are provided to confirm the availability of this efficient second-order algorithm. Behavior of the fluid flow with different Brinkman number is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1(1), 27–34 (1949)

    Article  Google Scholar 

  2. Forchheimer, P.: Wasserbewegung durch boden. Z. Ver. Deutsch Ing. 45(50), 1782–1788 (1901)

    Google Scholar 

  3. Celebi, A.O., Kalantarov, V.K., Ugurlu, D.: On continuous dependence on coefficients of the Brinkman–Forchheimer equations. Appl. Math. Lett. 19(8), 801–807 (2006)

    Article  MathSciNet  Google Scholar 

  4. Payne, L.E., Straughan, B.: Convergence and continuous dependence for the Brinkman–Forchheimer equations. Stud. Appl. Math. 102(4), 419–439 (1999)

    Article  MathSciNet  Google Scholar 

  5. Li, X., Rui, H.: Superconvergence of a fully conservative finite difference method on non-uniform staggered grids for simulating wormhole propagation with the Darcy-Brinkman-Forchheimer framework. J. Fluid Mech. 872, 438–471 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Caucao, S., Gatica, G.N., Oyarzúa, R., Sánchez, N.: A Fully-Mixed formulation for the steady Double-Diffusive Convection system based upon Brinkman–Forchheimer equations. J. Sci. Comput. 85(2), 37 (2020)

    Article  MathSciNet  Google Scholar 

  7. Cocquet, P.H., Rakotobe, M., Ramalingom, D., Bastide, A.: Error analysis for the finite element approximation of the Darcy–Brinkman–Forchheimer model for porous media with mixed boundary conditions. J. Comput. Appl. Math. 381, 113008 (2021)

    Article  MathSciNet  Google Scholar 

  8. Kou, J., Sun, S., Wu, Y.: A semi-analytic porosity evolution scheme for simulating wormhole propagation with the Darcy–Brinkman–Forchheimer model. J. Comput. Appl. Math. 348, 401–420 (2019)

    Article  MathSciNet  Google Scholar 

  9. Lebedev, V.L.: Difference analogues of orthogonal decompositions, fundamental differential operators and certain boundary-value problems of mathematical physics, I. USSR Comput. Math. Math. Phys. 4, 449–465 (1964)

    MathSciNet  Google Scholar 

  10. Welch, J.E., Harlow, F.H., Shannon, J.P., Daly, B.J.: The MAC method-a computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surfaces. Los Alamos Sci. Lab. Rep. LA-3425 (1965)

  11. Nicolaides, R..A.: Analysis and convergence of the MAC scheme. I. The linear problem. SIAM J. Numer. Anal. 29, 1579–1591 (1992)

    Article  MathSciNet  Google Scholar 

  12. Girault, V., Raviart, P.A.: An analysis of a mixed finite element method for the Navier–Stokes equations. Numer. Math. 33(3), 235–271 (1979)

    Article  MathSciNet  Google Scholar 

  13. Kanschat, G.: Divergence-free discontinuous Galerkin schemes for the Stokes equations and the MAC scheme. Int. J. Numer. Methods Fluids. 56, 941–950 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. Minev, P.D.: Remarks on the links between low-order DG methods and some finite-difference schemes for the Stokes problem. Int. J. Numer. Methods Fluids. 58, 307–317 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. Chen, L., Wang, M., Zhong, L.: Convergence analysis of triangular MAC schemes for two dimensional Stokes equations. J. Sci. Comput. 63, 716–744 (2015)

    Article  MathSciNet  Google Scholar 

  16. Eymard, R., Gallout, T., Herbin, R., Latché, J.C.: Convergence of the MAC scheme for the compressible STOKES equations. SIAM J. Numer. Anal. 48, 2218–2246 (2010)

    Article  MathSciNet  Google Scholar 

  17. Tan, Z., Lim, K.M., Khoo, B.C.: An implementation of MAC grid-based IIM-Stokes solver for incompressible two-phase flows. Commun. Comput. 10(5), 1333–1362 (2011)

    MathSciNet  Google Scholar 

  18. Lin, Y., Zou, Q.: Superconvergence analysis of the MAC scheme for the two dimensional stokes problem. Numer. Meth. Part Differ. Equ. 32(6), 1647–1666 (2016)

    Article  MathSciNet  Google Scholar 

  19. Rui, H., Li, X.: Stability and superconvergence of MAC scheme for Stokes equations on nonuniform grids. SIAM J. Numer. Anal. 55(3), 1135–1158 (2017)

    Article  MathSciNet  Google Scholar 

  20. Xu, J.: A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15(1), 231–237 (1994)

    Article  MathSciNet  Google Scholar 

  21. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33(5), 1759–1777 (1996)

    Article  MathSciNet  Google Scholar 

  22. Chen, C., Zhang, X., Zhang, G., Zhang, Y.: A two-grid finite element method for nonlinear parabolic integro-differential equations. Int. J. Comput. Math. 96(10), 2010–2023 (2019)

    Article  MathSciNet  Google Scholar 

  23. Li, Q., Du, G.: Local and parallel finite element methods based on two-grid discretizations for a non-stationary coupled Stokes-Darcy model. Comput. Math. Appl. 113, 254–269 (2022)

    Article  MathSciNet  Google Scholar 

  24. Chen, Y., Yi, H., Wang, Y., Huang, Y.: Immersed finite element approximation for semi-linear parabolic interface problems combining with two-grid methods. Appl. Numer. Math. 175, 56–72 (2022)

    Article  MathSciNet  Google Scholar 

  25. Xu, C., Chen, H.: A two-grid \(P_{0}^{2}-P_1\) mixed finite element scheme for semilinear elliptic optimal control problems. AIMS Math. 7(4), 6153–6172 (2022)

    Article  MathSciNet  Google Scholar 

  26. Hu, H., Fu, Y., Zhou, J.: Numerical solution of a miscible displacement problem with dispersion term using a two-grid mixed finite element approach. Numer. Algorithms 81(3), 879–914 (2019)

    Article  MathSciNet  Google Scholar 

  27. Shi, X., Lu, L.: A new two-grid nonconforming mixed finite element method for nonlinear Benjamin-Bona-Mahoney equation. Appl. Math. Comput. 371, 119–130 (2020)

    MathSciNet  Google Scholar 

  28. Lou, Y., Chen, C., Xue, G.: Two-grid finite volume element method combined with Crank-Nicolson scheme for semilinear parabolic equations. Adv. Appl. Math. Mech. 13(4), 892–913 (2021)

    Article  MathSciNet  Google Scholar 

  29. Zhang, H., Yin, J., Jin, J.: A two-grid finite-volume method for the Schrödinger equation. Adv. Appl. Math. Mech. 13(1), 176–190 (2021)

    Article  MathSciNet  Google Scholar 

  30. Fang, Z., Du, R., Li, H., Liu, Y.: A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations. AIMS Math. 7(2), 1941–1970 (2022)

    Article  MathSciNet  Google Scholar 

  31. Zhou, J., Yao, X., Wang, W.: Two-grid finite element methods for nonlinear time-fractional parabolic equations. Numer. Algorithms 90, 709–730 (2022)

    Article  MathSciNet  Google Scholar 

  32. Rui, H., Liu, W.: A two-grid block-centered finite difference method for Darcy–Forchheimer flow in porous media. SIAM J. Numer. Anal. 53(4), 1941–1962 (2015)

    Article  MathSciNet  Google Scholar 

  33. Rui, H., Pan, H.: Block-centered finite difference methods for parabolic equation with time-dependent coefficient. Jpn. J. Ind. Appl. Math. 30(3), 681–699 (2013)

    Article  MathSciNet  Google Scholar 

  34. Weiser, A., Wheeler, M.F.: On convergence of block-centered finite differences for elliptic problems. SIAM J. Numer. Anal. 25(2), 351–375 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  35. Rui, H., Zhao, D., Pan, H.: A block-centered finite difference method for Darcy–Forchheimer model with variable Forchheimer number. Numer. Meth. Part. Diff. Equ. 31(5), 1603–1622 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and referee for their valuable comments and suggestions, which helped us to improve the results of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Additional information

Communicated by S. Turek.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by Shandong Provincial Natural Science Foundation No. ZR2023MA052, China Postdoctoral Science Foundation No. 2021T140576 and No. 2020M672505.

Appendices

Appendices

1.1 Appendix A: Proof of Lemma 4.10

Lemma 4.10

Assume the analytical solutions \(\varvec{u}=(u^x,u^y)\) and p are smooth enough. \({\widetilde{u}}^{x}\), \({\widetilde{u}}^{y}\) are given in (4.3). \(U_H^x\), \(U_H^y\), \(P_H\) are obtained by Step 1 of the tg-MAC algorithm. Then there holds a positive constant C independent of H such that

$$\begin{aligned}&\parallel d_{x,H}(U_{H}^{x}-{\widetilde{u}}^{x})\parallel _{M} +\parallel D_{y,H}(U_{H}^{x}-{\widetilde{u}}^{x})\parallel _{T_{y}} +\parallel d_{y,H}(U_{H}^{y}-{\widetilde{u}}^{y})\parallel _{M}\nonumber \\&\quad +\parallel D_{x,H}(U_{H}^{y}-{\widetilde{u}}^{y})\parallel _{T_{x}}\le CH^{2}. \end{aligned}$$
(A.1)

Proof

From Step 1, the definition of \(\delta ^{\widetilde{\varvec{u}}}_{p}\), Lemma 4.2, Lemma 4.5, and Lemma 4.6, we have that for \(1\le \iota \le N_{x}-1\), \(0\le \sigma \le N_{y}-1\),

$$\begin{aligned}&-v[D_{x,H}d_{x,H}{\widetilde{u}}^{x}]_{\iota ,\sigma +1/2}-v[d_{y,H}D_{y,H}{\widetilde{u}}^{x}]_{\iota ,\sigma +1/2} +K_1^{-1}{\widetilde{u}}^{x}_{\iota ,\sigma +1/2}\nonumber \\&\quad \quad +F[S_{x}\widetilde{\varvec{u}}]{\widetilde{u}}^{x}_{\iota ,\sigma +1/2} +\Big [D_{x,H}(p-\delta ^{\widetilde{\varvec{u}}}_{p})\Big ]_{\iota ,\sigma +1/2}\nonumber \\&\quad =f^x_{\iota ,\sigma +1/2}-v\frac{\epsilon ^{x,x}_{\iota +1/2,\sigma +1/2}-\epsilon ^{x,x}_{\iota -1/2,\sigma +1/2}}{H_{\iota }^{x}}-v\frac{\epsilon ^{x,y}_{\iota ,\sigma +1}-\epsilon ^{x,y}_{\iota ,\sigma }}{H_{\sigma +1/2}^{y}}\nonumber \\&\quad \quad -r^{x}_{\iota ,\sigma +1/2}+R^{x}_{\iota ,\sigma +1/2}, \end{aligned}$$
(A.2)

where

$$\begin{aligned}&R^{x}_{\iota ,\sigma +1/2}=\Big [D_{x,H}(p-\delta ^{\widetilde{\varvec{u}}}_{p})\Big ]_{\iota ,\sigma +1/2}-\frac{\partial p}{\partial x}\Big |_{\iota ,\sigma +1/2} +F\Big ([S_{x}\widetilde{\varvec{u}}]_{\iota ,\sigma +1/2}-|\widetilde{\varvec{u}}|_{\iota ,\sigma +1/2}\Big ) {\widetilde{u}}^{x}_{\iota ,\sigma +1/2}\nonumber \\&\quad +\dfrac{1}{K_1}({\widetilde{u}}^{x}-u^{x})_{\iota ,\sigma +1/2}+F\Big (|\widetilde{\varvec{u}}| {\widetilde{u}}^{x}_{\iota ,\sigma +1/2}-|\varvec{u}|u^{x}_{\iota ,\sigma +1/2}\Big ). \end{aligned}$$
(A.3)

Similarly to the derivation of Lemma 4.2 in Rui [35], we can obtain that

$$\begin{aligned}&F\Big ([S_{x}\widetilde{\varvec{u}}]_{\iota ,\sigma +1/2}-|\widetilde{\varvec{u}}|_{\iota ,\sigma +1/2}\Big ) {\widetilde{u}}^x_{\iota ,\sigma +1/2}\nonumber \\&\quad =\dfrac{1}{4H_{\iota }}\left\{ \Big (F\dfrac{{\widetilde{u}}^{x}{\widetilde{u}}^{y}}{|\widetilde{\varvec{u}}|}\dfrac{\partial {\widetilde{u}}^{y}}{\partial x}\Big )_{\iota +1/2,\sigma +1/2}(H^{x}_{\iota +1/2})^{2}-\Big (F\dfrac{{\widetilde{u}}^{x}{\widetilde{u}}^{y}}{|\widetilde{\varvec{u}}|}\dfrac{\partial {\widetilde{u}}^{y}}{\partial x}\Big )_{\iota -1/2,\sigma +1/2}(H^{y}_{\iota -1/2})^{2}\right\} \nonumber \\&\quad \quad +O(H^{2}). \end{aligned}$$
(A.4)

Combining Lemma 4.2 and (A.4), we have that

$$\begin{aligned} \Big |\Big [D_{x,H}(p-\delta ^{\widetilde{\varvec{u}}}_{p})\Big ]_{\iota ,\sigma +1/2}-\frac{\partial p}{\partial x}\Big |_{\iota ,\sigma +1/2}+F\Big ([S_{x}\widetilde{\varvec{u}}]_{\iota ,\sigma +1/2}-|\widetilde{\varvec{u}}|_{\iota ,\sigma +1/2}\Big ) {\widetilde{u}}^{x}_{\iota ,\sigma +1/2}\Big |\le O(H^{2}). \end{aligned}$$
(A.5)

Using the similar estimation in Pan and Rui [35], we get

$$\begin{aligned} F\Big (|\widetilde{\varvec{u}}|{\widetilde{u}}^{x}_{\iota ,\sigma +1/2}-|\varvec{u}|u^{x}_{\iota ,\sigma +1/2}\Big )\le C(H^2). \end{aligned}$$
(A.6)

Then, from (A.3)-(A.6) and the definition of \(\tilde{\varvec{u}}\), we can easily obtain

$$\begin{aligned} \parallel \varvec{R} \parallel \le C(H^2), \end{aligned}$$
(A.7)

where \(\varvec{R}=(R^x,R^y)\).

Subtracting (A.2) from the second equation of (3.2), we have that

$$\begin{aligned}&-v[D_{x,H}d_{x,H}E^{x}_{\widetilde{\varvec{u}}}]_{\iota ,\sigma +1/2}-v[d_{y,H}D_{y,H}E^{y}_{\widetilde{\varvec{u}}}]_{\iota , \sigma +1/2}+K_1^{-1}E^{x}_{\widetilde{\varvec{u}},\iota ,\sigma +1/2}\nonumber \\&\quad +F\Big ([S_{x}\varvec{U}_{H}]U^{x}_{H,\iota ,\sigma +1/2}-[S_{x}\widetilde{\varvec{u}}]{\widetilde{u}}_{\iota ,\sigma +1/2}^{x}\Big ) +\Big [D_{x,H}(E_{p}+\delta ^{\widetilde{\varvec{u}}}_{p})\Big ]_{\iota ,\sigma +1/2}\nonumber \\&=v\dfrac{\epsilon ^{x,x}_{\iota +1/2,\sigma +1/2}-\epsilon ^{x,x}_{\iota -1/2,\sigma +1/2}}{H_{\iota }^{x}} +v\frac{\epsilon ^{x,y}_{\iota ,\sigma +1}-\epsilon ^{x,y}_{\iota ,\sigma }}{H_{\sigma +1/2}^{y}}+r^{x}_{\iota ,\sigma +1/2}-R^{x}_{\iota ,\sigma +1/2}. \end{aligned}$$
(A.8)

For the discrete function \(\{w^{x}_{\iota ,\sigma +1/2}\}\) with \(w_{\iota ,\sigma +1/2}^{x}\Big |_{\partial \Omega _H}=0\), (A.8) times \(w^{x}_{\iota ,\sigma +1/2}H^{x}_{\iota }H^{y}_{\sigma +1/2}\) and making the summation for \(\iota ,\sigma \) with \(\iota =1,\ldots ,N_x-1\), \(\sigma =0,\ldots ,N_y-1\) we obtain that

$$\begin{aligned}&K_1^{-1}(E^{x}_{\widetilde{\varvec{u}}},w^{x})_{T,M}-(E_{p}+\delta ^{\widetilde{\varvec{u}}}_{p},d_{x,H}w^{x})_{M} +\Big (F[S_{x}\varvec{U}_{H}]U_{H}^{x}-F[S_{x}\widetilde{\varvec{u}}]{\widetilde{u}}^{x},w^{x}\Big )_{T,M}\nonumber \\&\quad +v(d_{x,H}E^{x}_{\widetilde{\varvec{u}}},d_{x,H}w^{x})_{M}+v(D_{y,H}E^{x}_{\widetilde{\varvec{u}}},D_{y,H}w^{x})_{T_{y}}\nonumber \\&=-v(\epsilon ^{x,x},d_{x,H}w^{x})_{M}-v(\epsilon ^{x,y},D_{y,H}w^{x})_{T_{y}}+(r^{x}-R^{x},w^{x})_{T,M}. \end{aligned}$$
(A.9)

Similarly for the discrete function \(\{w^y_{\iota +1/2,\sigma }\}\) with \(w^y_{\iota +1/2,\sigma }\Big |_{\partial \Omega _H}=0\), we obtain

$$\begin{aligned}&K_2^{-1}(E^{y}_{\widetilde{\varvec{u}}},w^{y})_{M,T}-(E_{p}+\delta ^{\widetilde{\varvec{u}}}_{p},d_{y,H}w^{y})_{M} +\Big (F[S_{x}\varvec{U}_{H}]U_{H}^{y}-F[S_{x}\widetilde{\varvec{u}}]{\widetilde{u}}^{y},w^{y}\Big )_{M,T}\nonumber \\&\quad +v(d_{y,H}E^{y}_{\widetilde{\varvec{u}}},d_{y,H}w^{y})_{M}+v(D_{x,H} E^{y}_{\widetilde{\varvec{u}}},D_{x,H}w^{y})_{T_{x}}\nonumber \\&=-v(\epsilon ^{y,y},d_{y,H}w^{y})_{M}-v(\epsilon ^{y,x},D_{x,H}w^{y})_{T_{x}}+(r^{y}-R^{y},w^{y})_{M,T}. \end{aligned}$$
(A.10)

Summing (A.9) and (A.10) we get

$$\begin{aligned}&v(d_{x,H}E^{x}_{\widetilde{\varvec{u}}},d_{x,H}w^{x})_{M}+v(D_{y,H}E^{x}_{\widetilde{\varvec{u}}}, D_{y,H}w^{x})_{T_{y}}+v(d_{y,H}E^{y}_{\widetilde{\varvec{u}}},d_{y,H}w^{y})_{M}\nonumber \\&\quad \quad +v(D_{x,H}E^{y}_{\widetilde{\varvec{u}}},D_{x,H}w^{y})_{T_{x}}-(E_{p}+\delta ^{\widetilde{\varvec{u}}}_{p},d_{x,H}w^{x} +d_{y,H}w^{y})_{M}+K_1^{-1}(E^{x}_{\widetilde{\varvec{u}}},w^{x})_{T,M}\nonumber \\&\quad \quad +K_2^{-1}(E^{y}_{\widetilde{\varvec{u}}},w^{y})_{M,T}+\Big (F[S_{x}\varvec{U}_{H}]U_{H}^{x}-F[S_{x} \widetilde{\varvec{u}}]{\widetilde{u}}^{x},w^{x}\Big )_{T,M}\nonumber \\&\quad \quad +\Big (F[S_{x}\varvec{U}_{H}]U_{H}^{y}-F[S_{x}\widetilde{\varvec{u}}]{\widetilde{u}}^{y},w^{y}\Big )_{M,T}\nonumber \\&\quad =-v(\epsilon ^{x,x},d_{x,H}w^{x})_{M}-v(\epsilon ^{x,y},D_{y,H}w^{x})_{T_{y}}-v(\epsilon ^{y,y},d_{y,H}w^{y})_{M}\nonumber \\&\quad \quad -v(\epsilon ^{y,x},D_{x,H}w^{y})_{T_{x}}+(r^{x}-R^{x},w^{x})_{T,M}+(r^{y}-R^{y},w^{y})_{M,T}. \end{aligned}$$
(A.11)

According to the estimate of Lemma 4.5 in Rui [35], we have

$$\begin{aligned} \Big (F[S_{x}\varvec{U}_{H}]U_{H}^{x}-F[S_{x}\widetilde{\varvec{u}}]{\widetilde{u}}^{x},w^{x}\Big )_{T,M}\ge 0,\quad \Big (F[S_{y}\varvec{U}_{H}]U_{H}^{y}-F[S_{y}\widetilde{\varvec{u}}]{\widetilde{u}}^{y},w^{y}\Big )_{M,T}\ge 0. \end{aligned}$$
(A.12)

Then using \(\varvec{w}=(w^x,w^y)\), \(\parallel \varvec{w} \parallel \le \parallel d_{x,H}w^{x}\parallel _{M}+\parallel d_{y,H}w^{y}\parallel _{M}\) and Cauchy-Schwartz inequality, (A.11) can be transformed into the following,

$$\begin{aligned}&-(E_{p}+\delta ^{\widetilde{\varvec{u}}}_{p},d_{x,H}w^{x}+d_{y,H}w^{y})_{M}\nonumber \\&\quad \le -v(d_{x,H}E^{x}_{\widetilde{\varvec{u}}},d_{x,H}w^{x})_{M}-v(D_{y,H}E^{x}_{\widetilde{\varvec{u}}},D_{y,H}w^{x})_{T_{y}} -v(d_{y,H}E^{y}_{\widetilde{\varvec{u}}},d_{y,H}w^{y})_{M}\nonumber \\&\quad \quad -v(D_{x,H}E^{y}_{\widetilde{\varvec{u}}},D_{x,H}w^{y})_{T_{x}}-v(\epsilon ^{x,x},d_{x,H}w^{x})_{M} -v(\epsilon ^{x,y},D_{y,H}w^{x})_{T_{y}}\nonumber \\&\quad \quad -v(\epsilon ^{y,y},d_{y,H}w^{y})_{M}-v(\epsilon ^{y,x},D_{x,H}w^{y})_{T_{x}}+(r^{x} -R^{x},w^{x})_{T,M}+(r^{y}-R^{y},w^{y})_{M,T}\nonumber \\&\quad \quad -K^{-1}(E^{x}_{\widetilde{\varvec{u}}},w_{x})_{T,M}-K^{-1}(E^{y}_{\widetilde{\varvec{u}}},w_{y})_{M,T}\nonumber \\&\quad \le C\Big (\parallel \epsilon ^{x,x}\parallel _{M}+\parallel \epsilon ^{x,y}\parallel _{T_{y}} +\parallel \epsilon ^{y,y}\parallel _{M}+\parallel \epsilon ^{y,x}\parallel _{T_{x}}+\parallel D_HE_{\widetilde{\varvec{u}}} \parallel \Big )\parallel D\varvec{w} \parallel \nonumber \\&\quad \quad +\Big (\parallel r^{x}-R^{x}\parallel _{T,M}+\parallel r^{y}-R^{y}\parallel _{M,T}+K_1^{-1} \parallel E^{x}_{\widetilde{\varvec{u}}}\parallel _{T,M}+K_2^{-1}\parallel E^{y}_{\widetilde{\varvec{u}}} \parallel _{M,T}\Big )\parallel \varvec{w} \parallel \nonumber \\&\quad \le C\Big (\parallel \epsilon ^{x,x}\parallel _{M}+\parallel \epsilon ^{x,y}\parallel _{T_{y}} +\parallel \epsilon ^{y,y}\parallel _{M}+\parallel \epsilon ^{y,x}\parallel _{T_{x}} +\parallel D_HE_{\widetilde{\varvec{u}}}\parallel +\parallel r^{x}-R^{x}\parallel _{T,M}\nonumber \\&\quad \quad +\parallel r^{y}-R^{y}\parallel _{M,T}+K_1^{-1}\parallel E^{x}_{\widetilde{\varvec{u}}} \parallel _{T,M}+K_2^{-1}\parallel E^{y}_{\widetilde{\varvec{u}}}\parallel _{M,T}\Big )\parallel D_H\varvec{w} \parallel . \end{aligned}$$
(A.13)

Using Lemma 4.9 and (A.13), we can obtain

$$\begin{aligned}&\beta \parallel E_{p}+\delta ^{\widetilde{\varvec{u}}}_{p}\parallel _{M}\nonumber \\&\quad \le \mathop {sup}\limits _{\varvec{w}\le \varvec{V}_{H}} \dfrac{-(E_{p}+\delta ^{\widetilde{\varvec{u}}}_{p},d_{x,H}w^{x}+d_{y,H}w^{y})_{M}}{\parallel D_H\varvec{w}\parallel }\nonumber \\&\quad \le C\Big (\parallel D_HE_{\widetilde{\varvec{u}}}\parallel +\parallel \epsilon ^{x,x}\parallel _{M} +\parallel \epsilon ^{x,y}\parallel _{T_{y}}+\parallel \epsilon ^{y,y}\parallel _{M}+\parallel \epsilon ^{y,x}\parallel _{T_{x}}\nonumber \\&\quad \quad +\parallel r^{x}-R^{x}\parallel _{T,M}+\parallel r^{y}-R^{y}\parallel _{M,T}+K_1^{-1} \parallel E^{x}_{\widetilde{\varvec{u}}}\parallel _{T,M}+K_2^{-1}\parallel E^{y}_{\widetilde{\varvec{u}}}\parallel _{M,T}\Big )\nonumber \\&\quad \le C\Big (\parallel D_HE_{\widetilde{\varvec{u}}}\parallel +H^{2}\Big ). \end{aligned}$$
(A.14)

Setting \(w_{\iota ,\sigma +1/2}^{x}=E_{\widetilde{\varvec{u}},\iota ,\sigma +1/2}^{x}\) and \(w_{\iota +1/2,\sigma }^{y}=E_{\widetilde{\varvec{u}},\iota +1/2,\sigma }^{y}\) in (A.11), we have

$$\begin{aligned}&v\parallel D_HE_{\widetilde{\varvec{u}}}\parallel ^{2}\nonumber \\&\quad =v\parallel d_{x,H}E^{x}_{\widetilde{\varvec{u}}}\parallel _{M} +v\parallel D_{y,H}E^{x}_{\widetilde{\varvec{u}}}\parallel _{T_{y}} +v\parallel d_{y,H}E^{y}_{\widetilde{\varvec{u}}}\parallel _{M} +v\parallel D_{x,H}E^{y}_{\widetilde{\varvec{u}}}\parallel _{T_{x}}\nonumber \\&\quad =-v(\epsilon ^{x,x},d_{x,H}E^{x}_{\widetilde{\varvec{u}}})_{M}-v(\epsilon ^{x,y},D_{y,H}E^{x}_{\widetilde{\varvec{u}}})_{T_{y}} -v(\epsilon ^{y,y},d_{y,H}E^{y}_{\widetilde{\varvec{u}}})_{M}-v(\epsilon ^{y,x},D_{x,H}E^{y}_{\widetilde{\varvec{u}}})_{T_{x}}\nonumber \\&\quad \quad +(r^{x}-R^{x},E^{x}_{\widetilde{\varvec{u}}})_{T,M}+(r^{y}-R^{y},E^{y}_{\widetilde{\varvec{u}}})_{M,T} -K_1^{-1}(E^{x}_{\widetilde{\varvec{u}}},E^{x}_{\widetilde{\varvec{u}}})_{T,M} -K_2^{-1}(E^{y}_{\widetilde{\varvec{u}}},E^{y}_{\widetilde{\varvec{u}}})_{M,T}\nonumber \\&\quad \quad -\Big (F[S_{x}\varvec{U}_{H}]U_{H}^{x}-F[S_{x}\widetilde{\varvec{u}}]{\widetilde{u}}^{x},E^{x}_{\widetilde{\varvec{u}}}\Big )_{T,M} -\Big (F[S_{y}\varvec{U}_{H}]U_{H}^{y}-F[S_{y}\widetilde{\varvec{u}}]{\widetilde{u}}^{y},E^{y}_{\widetilde{\varvec{u}}}\Big )_{M,T}\nonumber \\&\quad \quad +(E_{p}+\delta ^{\widetilde{\varvec{u}}}_{p},d_{x}E^{x}_{\widetilde{\varvec{u}}}+d_{y}E^{y}_{\widetilde{\varvec{u}}})_{M}. \end{aligned}$$
(A.15)

Noting (4.10), (4.13), (4.17) and (4.18), we can get

$$\begin{aligned}&-v(\epsilon ^{x,x},d_{x,H}E^{x}_{\widetilde{\varvec{u}}})_{M}-v(\epsilon ^{x,y},D_{y,H}E^{x}_{\widetilde{\varvec{u}}})_{T_{y}} -v(\epsilon ^{y,y},d_{y,H}E^{y}_{\widetilde{\varvec{u}}})_{M}-v(\epsilon ^{y,x},D_{x,H}E^{y}_{\widetilde{\varvec{u}}})_{T_{x}}\nonumber \\&\quad \quad +(r^{x}-R^{x},E^{x}_{\widetilde{\varvec{u}}})_{T,M}+(r^{y}-R^{y},E^{y}_{\widetilde{\varvec{u}}})_{M,T}\nonumber \\&\quad \le \dfrac{v}{4}\Big (\parallel d_{x,H}E^{x}_{\widetilde{\varvec{u}}}\parallel _{M}^{2} +\parallel D_{y,H}E^{x}_{\widetilde{\varvec{u}}}\parallel _{T_{y}}^{2} +\parallel d_{y,H}E^{y}_{\widetilde{\varvec{u}}}\parallel _{M}^{2} +\parallel D_{x,H}E^{y}_{\widetilde{\varvec{u}}}\parallel _{T_{x}}^{2}\Big )+CH^{4}. \end{aligned}$$
(A.16)

Using Lemma 4.4 and (A.14), we have that

$$\begin{aligned}&(E_{p}+\delta ^{\widetilde{\varvec{u}}}_{p},d_{x,H}E^{x}_{\widetilde{\varvec{u}}}+d_{y,H}E^{y}_{\widetilde{\varvec{u}}})_{M}\le \frac{v}{4}\parallel D_HE_{\widetilde{\varvec{u}}}\parallel ^{2}+CH^{4}. \end{aligned}$$
(A.17)

Then, from (A.15), (A.16) and (A.17), we easily get

$$\begin{aligned}&\parallel D_HE_{\widetilde{\varvec{u}}}\parallel ^{2}\nonumber \\&\quad =\parallel d_{x,H}E^{x}_{\widetilde{\varvec{u}}}\parallel _{M}^2 +\parallel D_{y,H}E^{x}_{\widetilde{\varvec{u}}}\parallel _{T_{y}}^2 +\parallel d_{y,H}E^{y}_{\widetilde{\varvec{u}}}\parallel _{M}^2 +\parallel D_{x,H}E^{y}_{\widetilde{\varvec{u}}}\parallel _{T_{x}}^2\nonumber \\&\quad \le CH^{4}. \end{aligned}$$
(A.18)

Therefore, the Lemma holds. \(\square \)

1.2 Appendix B: Proof of Lemma 4.11

Lemma 4.11

Define the interpolation operator \(\hat{\varvec{U}}_H: \Omega _{H}\rightarrow \Omega _h\). And \({\tilde{u}}^x\), \({\tilde{u}}^y\) are given in (4.3), then there holds a positive constant C independent of H such that

$$\begin{aligned}&\parallel {\tilde{u}}^{x}-{\widehat{U}}_{H}^{x}\parallel _{T,M}^2+ \parallel {\tilde{u}}^{y}-{\widehat{U}}_{H}^{y}\parallel _{M,T}^2 \le CH^{4}. \end{aligned}$$
(A.19)

Proof

From (3.7), we obtain

$$\begin{aligned}&({\tilde{u}}^x-{\hat{U}}_H^x)_{\varsigma ,\kappa +1/2}\nonumber \\&\quad =\dfrac{\mu \nu }{IJ}({\tilde{u}}^x-U_H^x)_{\iota +1,\sigma +3/2}+\dfrac{\mu (J-\nu )}{IJ}({\tilde{u}}^x-U_H^x)_{\iota +1,\sigma +1/2}\nonumber \\&\quad \quad +\dfrac{(I-\mu )\nu }{IJ}({\tilde{u}}^x-U_H^x)_{\iota ,\sigma +3/2}+\dfrac{(I-\mu )(J-\nu )}{IJ}({\tilde{u}}^x-U_H^x)_{\iota ,\sigma +1/2}\nonumber \\&\quad \quad +O(H^2). \end{aligned}$$
(A.20)

Next, we get

$$\begin{aligned}&\Vert {\tilde{u}}^x-{\hat{U}}_H^x\Vert _{M}^{2}\nonumber \\&\quad \leqslant {C}\Big (\dfrac{\mu ^{2}\nu ^2}{I^{2}J^2}\Vert {\tilde{u}}^x-U_H^x\Vert _{T,M}^{2}+\dfrac{\mu ^{2}(J-\nu )^2}{I^{2}J^{2}}\Vert {\tilde{u}}^x -U_H^x\Vert _{T,M}^{2}\nonumber \\&\quad \quad +\dfrac{(I-\mu )^{2}\nu ^2}{I^{2}J^{2}}\Vert {\tilde{u}}^x-U_H^x\Vert _{T,M}^{2} +\dfrac{(I-\mu )^{2}(J-\nu )^{2}}{I^{2}J^{2}}\Vert {\tilde{u}}^x-U_H^x\Vert _{T,M}^{2}\nonumber \\&\quad \quad +O(H^4)\Big ). \end{aligned}$$
(A.21)

It follows from the definition of \({\tilde{u}}^x\) that

$$\begin{aligned} \parallel {\tilde{u}}^{x}-{\widehat{U}}_{H}^{x}\parallel _{T,M}^2\le CH^{4}. \end{aligned}$$
(A.22)

The proof of \(\parallel {\tilde{u}}^{y}-{\widehat{U}}_{h}^{y}\parallel _{M,T}^2\) is similar to \(\parallel {\tilde{u}}^{x}-{\widehat{U}}_{h}^{x}\parallel _{T,M}^2\). Therefore, the Lemma holds. \(\square \)

1.3 Appendix C: Proof of Lemma 4.12

Lemma 4.12

Suppose \( U_h^x, U_h^y\) are the nonlinear solutions on fine grid, then we have

$$\begin{aligned}&\parallel U_h^x-{\widehat{U}}_{H}^{x}\parallel _{T,M}+ \parallel U_h^y-{\widehat{U}}_{H}^{y}\parallel _{M,T} \le C(H^{2}+h^2). \end{aligned}$$
(A.23)

Proof

From the definition of \({\tilde{u}}^x\), we get

$$\begin{aligned} \parallel U_{H}^{x}-{\tilde{u}}^{x}\parallel _{T,M}\le CH^{2}. \end{aligned}$$
(A.24)

Similarly we can get

$$\begin{aligned} \parallel U_{h}^{x}-{\tilde{u}}^{x}\parallel _{T,M}\le Ch^{2}. \end{aligned}$$
(A.25)

Combining the Lemma 4.11, (A.24) and (A.25), we obtain

$$\begin{aligned} \parallel U_h^x-{\widehat{U}}_{H}^{x}\parallel _{T,M}\le C(H^{2}+h^2). \end{aligned}$$
(A.26)

The proof of \(\parallel U_h^y-{\widehat{U}}_{H}^{y}\parallel _{M,T}\) is similar to \(\parallel U_h^x-{\widehat{U}}_{H}^{x}\parallel _{T,M}\). Therefore, the Lemma can be established. \(\square \)

1.4 Appendix D: Proof of Lemma 4.15

Lemma 4.15

Let \(U_h^x\), \(U_h^y\) \(P_h\) be obtained by Step 2 of the tg-MAC algorithm. Suppose the analytical solutions \(\varvec{u}=(u^x,u^y)\) and p are smooth enough. \({\tilde{u}}^x\), \({\tilde{u}}^y\) are denoted in a similar way with (4.3), then there holds a positive constant C independent of h such that

$$\begin{aligned}&\parallel d_{x,h}(U_{h}^{x}-{\tilde{u}}^{x})\parallel _{M}+ \parallel D_{y,h}(U_{h}^{x}-{\tilde{u}}^{x})\parallel _{T_{y}}+ \parallel d_{y,h}(U_{h}^{y}-{\tilde{u}}^{y})\parallel _{M}\nonumber \\&\quad +\parallel D_{x,h}(U_{h}^{y}-{\tilde{u}}^{y})\parallel _{T_{x}} \le C(\varepsilon +H^{4}+h^2). \end{aligned}$$
(A.27)

Proof

From (1.1), the definition of \(\delta ^{\widetilde{\varvec{u}}}_{p}\), Lemmas 4.2, 4.5 and 4.6, for \(1\le \varsigma \le n_{x}-1\), \(0\le \kappa \le n_{y}-1\), we have

$$\begin{aligned}&-v[D_{x,h}d_{x,h}{\tilde{u}}^{x}]_{\varsigma ,\kappa +1/2}-v[d_{y,h}D_{y,h}{\tilde{u}}^{x}]_{\varsigma ,\kappa +1/2} +l_x(\varvec{{\tilde{u}}})_{\varsigma ,\kappa +1/2}+\Big [D_{x,h}(p-\delta ^{\varvec{{\tilde{u}}}}_{p})\Big ]_{\varsigma ,\kappa +1/2}\nonumber \\&=f^x_{\varsigma ,\kappa +1/2}+O(h^2). \end{aligned}$$
(A.28)

Subtracting (A.28) from the second equation of (3.4), we have

$$\begin{aligned}&-v[D_{x,h}d_{x,h}e_{\varvec{{\tilde{u}}}}^{x}]_{\varsigma ,\kappa +1/2}-v[d_{y,h}D_{y,h}e_{\varvec{{\tilde{u}}}}^{x}]_{\varsigma ,\kappa +1/2} -l_x(\varvec{{\tilde{u}}})_{\varsigma ,\kappa +1/2}+L_x^\varepsilon (\varvec{U}_h)_{\varsigma ,\kappa +1/2} \nonumber \\&+\Big [D_{x,h}(e_p+\delta ^{\varvec{{\tilde{u}}}}_{p})\Big ]_{\varsigma ,\kappa +1/2}=O(h^2). \end{aligned}$$
(A.29)

Combining this with Taylor expansion and (3.9), we can get

$$\begin{aligned}&-v[D_{x,h}d_{x,h}e_{\varvec{{\tilde{u}}}}^{x}]_{\varsigma ,\kappa +1/2}-v[d_{y,h}D_{y,h}e_{\varvec{{\tilde{u}}}}^{x}]_{\varsigma ,\kappa +1/2} -l_x(\tilde{\varvec{u}})_{\varsigma ,\kappa +1/2}+l_x^\varepsilon (\tilde{\varvec{u}})_{\varsigma ,\kappa +1/2}\nonumber \\&\quad -l_x^\varepsilon (\widehat{\varvec{U}}_{H})_{\varsigma ,\kappa +1/2}+l_x(\widehat{\varvec{U}}_{H})_{\varsigma ,\kappa +1/2} +\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{x}}(\widehat{\varvec{U}}_{H})_{\varsigma ,\kappa +1/2}({U}_{h}^{x} -{\tilde{u}}^{x})_{\varsigma ,\kappa +1/2}\nonumber \\&\quad +\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_{1}}(\widehat{\varvec{U}}_{H})_{\varsigma ,\kappa +1/2}({U}_{h}^{y} -{\tilde{u}}^{y})_{\varsigma -1/2,\kappa +1} +\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_{2}}(\widehat{\varvec{U}}_{H})_{\varsigma ,\kappa +1/2}({U}_{h}^{y} -{\tilde{u}}^{y})_{\varsigma -1/2,\kappa }\nonumber \\&\quad +\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_{3}}(\widehat{\varvec{U}}_{H})_{\varsigma ,\kappa +1/2}({U}_{h}^{y} -{\tilde{u}}^{y})_{\varsigma +1/2,\kappa +1}+\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_{4}} (\widehat{\varvec{U}}_{H})_{\varsigma ,\kappa +1/2}({U}_{h}^{y}-{\tilde{u}}^{y})_{\varsigma +1/2,\kappa }\nonumber \\&\quad +\Big [D_{x,h}(e_p+\delta ^{\varvec{{\tilde{u}}}}_{p})\Big ]_{\varsigma ,\kappa +1/2}+O\Big (({\tilde{u}}^x -{\widehat{U}}_{H}^{x})^2_{\varsigma ,\kappa +1/2}+(U_h^x-{\widehat{U}}_{H}^{x})^2_{\varsigma ,\kappa +1/2}\Big )\nonumber \\&=O(h^2). \end{aligned}$$
(A.30)

Multiplying (A.30) by \(e_{\varvec{{\tilde{u}}},\varsigma ,\kappa +1/2}^{x}h^{x}_{\varsigma }h^{y}_{\kappa +1/2}\) and making the summation for \(\varsigma ,\kappa \), we have

$$\begin{aligned}&v\Vert d_{x,h}e^{x}_{\varvec{{\tilde{u}}}}\Vert ^2_{M}+v\Vert D_{y,h}e^{x}_{\varvec{{\tilde{u}}}}\Vert ^2_{T_{y}} +\Big (l_x^\varepsilon (\tilde{\varvec{u}})-l_x(\tilde{\varvec{u}}),e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M} +\Big (l_x(\widehat{\varvec{U}}_{H})-l_x^\varepsilon (\widehat{\varvec{U}}_{H}),e^{x}_{\varvec{{\tilde{u}}}}\Big )_{l^2,T,M}\nonumber \\&\quad +\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{x}}(\widehat{\varvec{U}}_{H}) e^{x}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M} +\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_1}(\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}}, e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M} +\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial u^{y}_2}(\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}} ,e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}\nonumber \\&\quad +\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_3}(\widehat{\varvec{U}}_{H}) e^{y}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M} +\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_4} (\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M} -(e_{p}+\delta ^{\varvec{{\tilde{u}}}}_{p},d_{x,h}e^{x}_{\varvec{{\tilde{u}}}})_{M}\nonumber \\&\quad +\Big (O\Big (({\tilde{u}}^x-{\widehat{U}}_{H}^{x})^2+(U_h^x-{\widehat{U}}_{H}^{x})^2\Big ), e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}=\Big (O(h^2),e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}. \end{aligned}$$
(A.31)

Similarly, we have that

$$\begin{aligned}&v\Vert d_{y,h}e^{y}_{\varvec{{\tilde{u}}}}\Vert ^2_{M}+v\Vert D_{x,h}e^{y}_{\varvec{{\tilde{u}}}}\Vert ^2_{T_{x}} +\Big (l_y^\varepsilon (\tilde{\varvec{u}})-l_y(\tilde{\varvec{u}}),e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} +\Big (l_y(\widehat{\varvec{U}}_{H})-l_y^\varepsilon (\widehat{\varvec{U}}_{H}),e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T}\nonumber \\&\quad +\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{y}}(\widehat{\varvec{U}}_{H}) e^{y}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} +\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{1}}(\widehat{\varvec{U}}_{H}) e^{x}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} +\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{2}}(\widehat{\varvec{U}}_{H}) e^{x}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T}\nonumber \\&\quad +\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{3}}(\widehat{\varvec{U}}_{H}) e^{x}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T}+\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{4 }}(\widehat{\varvec{U}}_{H})e^{x}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} -(e_{p}+\delta ^{\varvec{{\tilde{u}}}}_{p},d_{y,h}e^{y}_{\varvec{{\tilde{u}}}})_{M}\nonumber \\&\quad +\Big (O\Big (({\tilde{u}}^y-{\widehat{U}}_{H}^{y})^2+(U_h^y-{\widehat{U}}_{H}^{y})^2\Big ),e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} =\Big (O(h^2),e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T}. \end{aligned}$$
(A.32)

Summing (A.31) and (A.32), we gain

$$\begin{aligned}&v\Vert d_{x,h}e^{x}_{\varvec{{\tilde{u}}}}\Vert ^2_{M}+v\Vert D_{y,h}e^{x}_{\varvec{{\tilde{u}}}}\Vert ^2_{T_{y}} +v\Vert d_{y,h}e^{y}_{\varvec{{\tilde{u}}}}\Vert ^2_{M}+v\Vert D_{x,h}e^{y}_{\varvec{{\tilde{u}}}}\Vert ^2_{T_{x}} +\Big (l_x^\varepsilon (\tilde{\varvec{u}})-l_x(\tilde{\varvec{u}}),e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}\nonumber \\&\quad +\Big (l_x(\widehat{\varvec{U}}_{H})-l_x^\varepsilon (\widehat{\varvec{U}}_{H}),e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M} +\Big (l_y^\varepsilon (\tilde{\varvec{u}})-l_y(\tilde{\varvec{u}}),e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} +\Big (l_y(\widehat{\varvec{U}}_{H})-l_y^\varepsilon (\widehat{\varvec{U}}_{H}),e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T}\nonumber \\&\quad +\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{x}}(\widehat{\varvec{U}}_{H}) e^{x}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M} +\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{y}}(\widehat{\varvec{U}}_{H}) e^{y}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} +\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_1}(\widehat{\varvec{U}}_{H}) e^{y}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}\nonumber \\&\quad +\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial u^{y}_2}(\widehat{\varvec{U}}_{H}) e^{y}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M} +\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_3}(\widehat{\varvec{U}}_{H}) e^{y}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M} +\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_4}(\widehat{\varvec{U}}_{H}) e^{y}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}\nonumber \\&\quad +\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{1}}(\widehat{\varvec{U}}_{H}) e^{x}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} +\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{2}}(\widehat{\varvec{U}}_{H}) e^{x}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{u}}\Big )_{M,T} +\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{3}}(\widehat{\varvec{U}}_{H}) e^{x}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{u}}\Big )_{M,T}\nonumber \\&\quad +\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{4}}(\widehat{\varvec{U}}_{H})e^{x}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} +\Big (O\Big (({\tilde{u}}^x-{\widehat{U}}_{H}^{x})^2+(U_h^x-{\widehat{U}}_{H}^{x})^2\Big ),e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}\nonumber \\&\quad +\Big (O\Big (({\tilde{u}}^y-{\widehat{U}}_{H}^{y})^2+(U_h^y-{\widehat{U}}_{H}^{y})^2\Big ),e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} -(e_{p}+\delta ^{\varvec{{\tilde{u}}}}_{p},d_{x,h}e^{x}_{\varvec{{\tilde{u}}}}+d_{y,h}e^{y}_{\varvec{{\tilde{u}}}})_{M}\nonumber \\&=\Big (O(h^2),e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}+\Big (O(h^2),e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T}. \end{aligned}$$
(A.33)

Then using \(\Vert \varvec{w}\Vert \le \Vert d_{x,h}w^{x}\Vert _{M}+\Vert d_{y,h}w^{y}\Vert _{M}\), Lemma 4.2 and Cauchy-Schwartz inequality, we have

$$\begin{aligned}&-(e_{p}+\delta ^{\varvec{{\tilde{u}}}}_{p},d_{x,h}e^{x}_{\varvec{{\tilde{u}}}}+d_{y,h}e^{y}_{\varvec{{\tilde{u}}}})_{M}\nonumber \\&\quad \le v\Vert D_he_{\varvec{{\tilde{u}}}}\Vert ^2+ \Big (\Vert O(h^2)\Vert _{T,M}+\Vert l_x^\varepsilon (\tilde{\varvec{u}}) -l_x(\tilde{\varvec{u}})\Vert _{T,M}+\Vert l_x(\widehat{\varvec{U}}_{H})-l_x^\varepsilon (\widehat{\varvec{U}}_{H})\Vert _{T,M}\nonumber \\&\quad \quad +\Vert \dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{x}}(\widehat{\varvec{U}}_{H})e^{x}_{\varvec{{\tilde{u}}}}\Vert _{T,M} +\Vert \dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_1}(\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}}\Vert _{T,M} +\Vert \dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_2}(\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}}\Vert _{T,M} +\Vert \dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_3}(\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}}\Vert _{T,M}\nonumber \\&\quad \quad +\Vert \dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_4}(\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}}\Vert _{M,T}+\Vert O\Big (({\tilde{u}}^x -{\widehat{U}}_{H}^{x})^2+(U_h^x-{\widehat{U}}_{H}^{x})^2\Big )\Vert _{T,M}\Big )\Vert e^{x}_{\varvec{{\tilde{u}}}}\Vert _{ T,M}+\Big (\Vert O(h^2)\Vert _{M,T}\nonumber \\&\quad \quad +\Vert l_y^\varepsilon (\tilde{\varvec{u}})-l_y(\tilde{\varvec{u}})\Vert _{M,T} +\Vert l_y(\widehat{\varvec{U}}_{H})-l_y^\varepsilon (\widehat{\varvec{U}}_{H})\Vert _{M,T} +\Vert \dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{y}}(\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}}\Vert _{M,T}\nonumber \\&\quad \quad +\Vert \dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{1}}(\widehat{\varvec{U}}_{H})e^{x}_{\varvec{{\tilde{u}}}}\Vert _{M,T} +\Vert \dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{2}}(\widehat{\varvec{U}}_{H})e^{x}_{\varvec{{\tilde{u}}}}\Vert _{M,T} +\Vert \dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{3}}(\widehat{\varvec{U}}_{H})e^{x}_{\varvec{{\tilde{u}}}}\Vert _{M,T} +\Vert \dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{4}}(\widehat{\varvec{U}}_{H})e^{x}_{\varvec{{\tilde{u}}}}\Vert _{M,T}\nonumber \\&\quad \quad +\Vert O\Big (({\tilde{u}}^y-{\widehat{U}}_{H}^{y})^2+(U_h^y-{\widehat{U}}_{H}^{y})^2\Big )\Vert _{M,T}\Big )\Vert e^{y}_{\varvec{{\tilde{u}}}}\Vert _{M,T}\nonumber \\&\quad \le C\Big (\Vert D_he_{\varvec{{\tilde{u}}}}\Vert +O(\varepsilon +H^4+h^2)\Big )\Vert D_he_{\varvec{{\tilde{u}}}}\Vert . \end{aligned}$$
(A.34)

Then, making several steps of proof which are similar to Theorem 4.1, we can get

$$\begin{aligned} \beta \parallel e_{p}+\delta ^{\varvec{{\tilde{u}}}}_{p}\parallel _{M} \le C\Big (\Vert D_he_{\varvec{{\tilde{u}}}}\Vert +O(\varepsilon +H^4+h^2)\Big ) \end{aligned}$$
(A.35)

and

$$\begin{aligned} (e_{p}+\delta ^{\varvec{{\tilde{u}}}}_{p},d_{x,h}e^{x}_{\varvec{{\tilde{u}}}}+d_{y,h}e^{y}_{\varvec{{\tilde{u}}}})_{M}\le \frac{v}{4}\Vert D_he_{\varvec{{\tilde{u}}}}\Vert ^{2}+C(\varepsilon ^2+H^8+h^4). \end{aligned}$$
(A.36)

By Lemmas 4.11-4.14, we get that

$$\begin{aligned}&\Big (O(h^2),e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}+\Big (O(h^2),e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} -\Big (l_x^\varepsilon ({\tilde{u}})-l_x({\tilde{u}}),e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M} -\Big (l_y^\varepsilon ({\tilde{u}})-l_y({\tilde{u}}),e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T}\nonumber \\&\quad \quad -\Big (l_x(\widehat{\varvec{U}}_{H})-l_x^\varepsilon (\widehat{\varvec{U}}_{H}),e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M} -\Big (l_y(\widehat{\varvec{U}}_{H})-l_y^\varepsilon (\widehat{\varvec{U}}_{H}),e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} -\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{x}}(\widehat{\varvec{U}}_{H})e^{x}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}\nonumber \\&\quad \quad -\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{y}}(\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} -\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_1}(\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}-\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_2}(\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}\nonumber \\&\quad \quad -\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_3}(\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M} -\Big (\dfrac{\partial l^{\varepsilon }_{x}}{\partial {u}^{y}_4}(\widehat{\varvec{U}}_{H})e^{y}_{\varvec{{\tilde{u}}}},e^{x}_{\varvec{{\tilde{u}}}}\Big )_{T,M}-\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{1}}(\widehat{\varvec{U}}_{H})e^{x}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T}\nonumber \\&\quad \quad -\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{2}}(\widehat{\varvec{U}}_{H})e^{x}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T} -\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{3}}(\widehat{\varvec{U}}_{H})e^{x}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T}-\Big (\dfrac{\partial l^{\varepsilon }_{y}}{\partial {u}^{x}_{4 }}(\widehat{\varvec{U}}_{H})e^{x}_{\varvec{{\tilde{u}}}},e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T}\nonumber \\&\quad \quad +\Big (O\Big (({\tilde{u}}^x-{\widehat{U}}_{H}^{x})^2+(U_h^x-{\widehat{U}}_{H}^{x})^2\Big ),e^{x}_ {\varvec{{\tilde{u}}}}\Big )_{T,M}+\Big (O\Big (({\tilde{u}}^y-{\widehat{U}}_{H}^{y})^2+(U_h^y-{\widehat{U}}_{H}^{y})^2\Big ), e^{y}_{\varvec{{\tilde{u}}}}\Big )_{M,T}\nonumber \\&\quad \le \dfrac{v}{4}\Big (\parallel d_{x,h}e^{x}_{\varvec{{\tilde{u}}}}\parallel _{M}^2 +\parallel D_{y,h}e^{x}_{\varvec{{\tilde{u}}}}\parallel _{T_{y}}^2 +\parallel d_{y,h}e^{y}_{\varvec{{\tilde{u}}}}\parallel _{M}^2 +\parallel D_{x,h}e^{y}_{\varvec{{\tilde{u}}}}\parallel _{T_{x}}^2\Big )\nonumber \\&\quad \quad +C(\varepsilon ^2+H^8+h^4). \end{aligned}$$
(A.37)

Combining this with (A.32) and (A.36), we have

$$\begin{aligned}&\parallel D_he_{\varvec{{\tilde{u}}}}\parallel ^{2}\nonumber \\&\quad =\parallel d_{x,h}e^{x}_{\varvec{{\tilde{u}}}}\parallel _{M}^2 +\parallel D_{y,h}e^{x}_{\varvec{{\tilde{u}}}}\parallel _{T_{y}}^2 +\parallel d_{y,h}e^{y}_{\varvec{{\tilde{u}}}}\parallel _{M}^2 +\parallel D_{x,h}e^{y}_{\varvec{{\tilde{u}}}}\parallel _{T_{x}}^2\nonumber \\&\quad \le C(\varepsilon ^2+H^8+h^4). \end{aligned}$$
(A.38)

Therefore, the Lemma can be established. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Liu, W., Fan, G. et al. An Efficient Second-Order Algorithm Upon MAC Scheme for Nonlinear Incompressible Darcy–Brinkman–Forchheimer Model. J. Math. Fluid Mech. 26, 28 (2024). https://doi.org/10.1007/s00021-024-00851-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-024-00851-w

Keywords

Mathematics Subject Classification

Navigation