Skip to main content
Log in

Linear Instability of Symmetric Logarithmic Spiral Vortex Sheets

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider Alexander spirals with \(M\ge 3\) branches, that is symmetric logarithmic spiral vortex sheets. We show that such vortex sheets are linearly unstable in the \(L^\infty \) (Kelvin–Helmholtz) sense, as solutions to the Birkhoff–Rott equation. To this end we consider Fourier modes in a logarithmic variable to identify unstable solutions with polynomial growth in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availibility

This work has no associated data.

References

  1. Alexander, R.C.: Family of similarity flows with vortex sheets. Phys. Fluids 14(2), 231–239 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  2. Birkhoff, G.: Helmholtz and Taylor instability. Proc. Symp. Appl. Math. XII I, 55–76 (1962)

    Article  MathSciNet  Google Scholar 

  3. Castro, A., Córdoba, D., Faraco, D.: Mixing solutions for the Muskat problem. Invent. Math. 226(1), 251–348 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cieślak, T., Kokocki, P., Ożański, W.S.: Well-posedness of logarithmic spiral vortex sheets. J. Differ. Equ. (to appear), arXiv:2110.07543

  5. Cieślak, T., Kokocki, P., Ożański, W.S.: Existence of nonsymmetric logarithmic spiral vortex sheet solutions to the 2D Euler equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (to appear), preprint available at arXiv:2207.06056

  6. Elgindi, T.M., Jeong, I.: Symmetries and critical phenomena in fluids. Comm. Pure Appl. Math. 73(2), 257–316 (2020)

    Article  MathSciNet  Google Scholar 

  7. Elling, V., Gnann, M.V.: Variety of unsymmetric multibranched logarithmic vortex spirals. Eur. J. Appl. Math. 30(1), 23–38 (2019)

    Article  MathSciNet  Google Scholar 

  8. Everson, R.M., Sreenivasan, K.R.: Accumulation rates of spiral-like structures in fluid flows. Proc. R. Soc. Lond. Ser. A 437, 391–401 (1992)

    Article  ADS  Google Scholar 

  9. Friedlander, S., Strauss, W., Vishik, M.: Robustness of instability for the two-dimensional Euler equations. SIAM J. Math. Anal. 30(6), 1343–1354 (1999)

    Article  MathSciNet  Google Scholar 

  10. Gómez-Serrano, J., Park, J., Shi, J., Yao, Y.: Remarks on stationary and uniformly-rotating vortex sheets: rigidity results. Comm. Math. Phys. 386(3), 1845–1879 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover, New York (1953)

    Book  Google Scholar 

  12. Jeong, I.-J., Said, A.R.: Logarithmic spirals in 2d perfect fluids, arXiv:2302.09447

  13. Kelvin, L.: Nature 50(524), 549–573 (1894)

  14. Lin, Z.: Nonlinear instability of ideal plane flows. Int. Math. Res. Not. 41, 2147–2178 (2004)

    Article  MathSciNet  Google Scholar 

  15. Lopes Filho, M.C., Nussenzveig Lopes, H.J., Souza, M.O.: On the equation satisfied by a steady Prandtl–Munk vortex sheet. Comm. Math. Sci. 1, 68–73 (2003)

  16. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge (2002)

    Google Scholar 

  17. Maxwell, J.C.: On the Stability of the Motion of Saturn’s Rings. Cambridge University Press, Cambridge (1859)

    Google Scholar 

  18. Mengual, F., Székelyhidi, L., Jr.: Dissipative Euler flows for vortex sheet initial data without distinguished sign. Comm. Pure Appl. Math. 76(1), 163–221 (2023)

    Article  MathSciNet  Google Scholar 

  19. Otto, F.: Evolution of microstructure in unstable porous media flow: a relaxational approach. Comm. Pure Appl. Math. 52(7), 873–915 (1999)

    Article  MathSciNet  Google Scholar 

  20. Prandtl, L.: Über die Entstehung von Wirbeln in der idealen Flüssigkeit. In: von Kármán, T., Levi Civita, T. (Eds.) Vorträge aus dem Gebiete Hydro- und Aerodynamik. Springer, Berlin (1992)

  21. Protas, B., Llewellyn Smith, S.G., Sakajo, T.: Finite rotating and translating vortex sheets. J. Fluid Mech. 923, A23 (2021)

  22. Rott, N.: Diffraction of a weak Schock with vortex generation. J. Fluid Mech. 1, 111–128 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  23. Székelyhidi, L., Jr.: Weak solutions to the incompressible Euler equations with vortex sheet initial data. C. R. Math. Acad. Sci. Paris 349(19–20), 1063–1066 (2011)

    Article  MathSciNet  Google Scholar 

  24. Székelyhidi, L., Jr.: Relaxation of the incompressible porous media equation. Ann. Sci. Éc. Norm. Supér. (4) 45(3), 491–509 (2012)

  25. von Helmholtz, H.: Über discontinuirliche Flüssigkeitsbewegungen Monatsberichte d. königl. Akad. d. Wiss. zu Berlin, pp. 215–228 (1868)

Download references

Acknowledgements

T.C. was partially supported by the National Science Centre Grant SONATA BIS 7 number UMO-2017/26/E/ST1/00989. WSO was supported in part by the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech S. Ożański.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by R. Shvydkoy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we show some more properties of the notion of the finite part (recall (2.1)), and we prove (2.4) in Proposition 6.3 below.

Lemma 6.1

(Finite part of a regular or p.v. integral). If \(f(t) = g(t)(t-x)^{2}\) then

$$\begin{aligned} \mathrm {f.p.}\int _{a}^{b} \frac{f(t)}{(t-x)^{2}}\,\textrm{d}t = \int _{a}^{b} g(t)\,\textrm{d}t, \end{aligned}$$

and if \(f(t) = g(t)(t-x)\) then

$$\begin{aligned} \mathrm {f.p.}\int _{a}^{b} \frac{f(t)}{(t-x)^{2}}\,\textrm{d}t = \mathrm {p.v.}\int _{a}^{b}\frac{g(t)}{t-x}\,\textrm{d}t \end{aligned}$$

for every \(x\in (a,b)\) and every \(g\in C^{\infty }((a,b),\mathbb {R})\).

Proof

For the first claim we recall the definition (2.1) to get

$$\begin{aligned} \mathrm {f.p.}\int _{a}^{b} \frac{f(t)}{(t-x)^{2}}\,\textrm{d}t&= \lim _{\varepsilon \rightarrow 0^{+}} \left( \int _{a}^{x-\varepsilon }\frac{g(t)(t-x)^{2}}{(t-x)^{2}}\,\textrm{d}t + \int _{x+\varepsilon }^{b}\frac{g(t)(t-x)^{2}}{(t-x)^{2}}\,\textrm{d}t -\frac{g(x+\varepsilon )\varepsilon ^{2}+g(x-\varepsilon )(-\varepsilon )^{2}}{\varepsilon }\right) \\&=\lim _{\varepsilon \rightarrow 0^{+}} \left( \int _{a}^{x-\varepsilon } g(t)\,\textrm{d}t + \int _{x+\varepsilon }^{b}g(t) \,\textrm{d}t-(g(x+\varepsilon )\varepsilon -g(x-\varepsilon )\varepsilon )\right) = \int _{a}^{b}g(t)\,\textrm{d}t , \end{aligned}$$

and for the second claim we have

$$\begin{aligned}&\mathrm {f.p.}\int _{a}^{b} \frac{f(t)}{(t-x)^{2}}\,\textrm{d}t = \lim _{\varepsilon \rightarrow 0^{+}} \left( \int _{a}^{x-\varepsilon }\frac{g(t)(t-x)}{(t-x)^{2}}\,\textrm{d}t + \int _{x+\varepsilon }^{b}\frac{g(t)(t-x)}{(t-x)^{2}}\,\textrm{d}t -\frac{g(x+\varepsilon )\varepsilon +g(x-\varepsilon )(-\varepsilon )}{\varepsilon }\right) \\&\qquad = \lim _{\varepsilon \rightarrow 0^{+}} \left( \int _{a}^{x-\varepsilon }\frac{g(t)}{t-x}\,\textrm{d}t + \int _{x+\varepsilon }^{b}\frac{g(t)}{t-x}\,\textrm{d}t-(g(x+\varepsilon ) - g(x-\varepsilon ))\right) =\mathrm {p.v.}\int _{a}^{b}\frac{g(t)}{t-x}\,\textrm{d}t. \end{aligned}$$

as desired. \(\square \)

We now consider a bit more general denominator, and we characterize the finite part from Definition 2.1 as the derivative of the principal value integral.

Lemma 6.2

(FP vs. PV). For any \(x\in (a,b)\), the following equality holds

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}x}\left( \mathrm {p.v.}\int _{a}^{b}\frac{f(t)}{\gamma (t)-\gamma (x)}\,\textrm{d}t\right) = \gamma '(x)\,\mathrm {f.p.}\int _{a}^{b} \frac{f(t)}{(\gamma (t)-\gamma (x))^{2}}\,\textrm{d}t, \end{aligned}$$
(6.1)

where \(\gamma :[a,b]\rightarrow \mathbb {C}\) is a smooth curve such that \(\gamma '(t)\ne 0\) for \(t\in [a,b]\).

Proof

Let us observe that

$$\begin{aligned}&\frac{\textrm{d}}{\textrm{d}x}\left( \int _{a}^{x-\varepsilon }\frac{f(t)}{\gamma (t)-\gamma (x)}\,\textrm{d}t + \int _{x+\varepsilon }^{b}\frac{f(t)}{\gamma (t)-\gamma (x)}\,\textrm{d}t\right) = \int _{a}^{x-\varepsilon }\frac{\gamma '(x)f(t)\,\textrm{d}t}{(\gamma (t)-\gamma (x))^{2}} + \int _{x+\varepsilon }^{b}\frac{\gamma '(x)f(t)\,\textrm{d}t}{(\gamma (t)-\gamma (x))^{2}} \\&\quad +\frac{f(x-\varepsilon )}{\gamma (x-\varepsilon )-\gamma (x)} - \frac{f(x+\varepsilon )}{\gamma (x+\varepsilon )-\gamma (x)}. \end{aligned}$$

Then we have the following asymptotics as \(\varepsilon \rightarrow 0\)

$$\begin{aligned}&-\frac{\varepsilon f(x+\varepsilon )\gamma '(x)}{(\gamma (x+\varepsilon )-\gamma (x))^{2}} + \frac{f(x+\varepsilon )}{\gamma (x+\varepsilon )-\gamma (x)} = -\frac{f(x+\varepsilon )(\varepsilon \gamma '(x) - \gamma (x+\varepsilon ) + \gamma (x))}{(\gamma (x+\varepsilon )-\gamma (x))^{2}} \\&\qquad = -\frac{f(x+\varepsilon )(\frac{1}{2}\gamma ''(x)\varepsilon ^{2} + o(\varepsilon ^{2}))}{(\gamma (x+\varepsilon )-\gamma (x))^{2}} =-\frac{1}{2}\frac{f(x+\varepsilon )\gamma ''(x)\varepsilon ^{2}}{(\gamma (x+\varepsilon )-\gamma (x))^{2}} + o(1) \end{aligned}$$

and furthermore

$$\begin{aligned}&-\frac{\varepsilon f(x-\varepsilon )\gamma '(x)}{(\gamma (x-\varepsilon )-\gamma (x))^{2}} - \frac{f(x-\varepsilon )}{\gamma (x-\varepsilon )-\gamma (x)} = \frac{f(x-\varepsilon )(-\varepsilon \gamma '(x) - \gamma (x-\varepsilon ) + \gamma (x))}{(\gamma (x-\varepsilon )-\gamma (x))^{2}} \\&\qquad = \frac{f(x-\varepsilon )(\frac{1}{2}\gamma ''(x)\varepsilon ^{2} + o(\varepsilon ^{2}))}{(\gamma (x-\varepsilon )-\gamma (x))^{2}} =\frac{1}{2}\frac{f(x-\varepsilon )\gamma ''(x)\varepsilon ^{2}}{(\gamma (x-\varepsilon )-\gamma (x))^{2}} + o(1). \end{aligned}$$

Since the limits in the definition of \(\mathrm {p.v.}\) and \(\mathrm {f.p.}\) are uniform with respect to x in compact subsets of (ab), it follows that

$$\begin{aligned}&\frac{\textrm{d}}{\textrm{d}x}\left( \mathrm {p.v.}\int _{a}^{b}\frac{f(t)}{\gamma (t)-\gamma (x)}\,\textrm{d}t\right) - \gamma '(x)\,\mathrm {f.p.}\int _{a}^{b} \frac{f(t)}{(\gamma (t)-\gamma (x))^{2}}\,\textrm{d}t\\&\qquad = \lim _{\varepsilon \rightarrow 0}\left( -\frac{1}{2}\frac{f(x+\varepsilon )\gamma ''(x)\varepsilon ^{2}}{(\gamma (x+\varepsilon )-\gamma (x))^{2}} + \frac{1}{2}\frac{f(x-\varepsilon )\gamma ''(x)\varepsilon ^{2}}{(\gamma (x-\varepsilon )-\gamma (x))^{2}} \right) = 0, \end{aligned}$$

and the proof of lemma is completed. \(\square \)

In the following proposition we prove the integration by parts formula (2.4).

Proposition 6.3

(FP vs. PV via integration by parts). Let us assume that \(\gamma :[a,b]\rightarrow \mathbb {C}\) is a smooth curve satisfying \(\gamma '(t)\ne 0\) for \(t\in [a,b]\). Then, for any \(x\in (a,b)\), we have

$$\begin{aligned} \mathrm {f.p.}\int _{a}^{b} \frac{f(t)\,\textrm{d}t}{(\gamma (t)\!-\!\gamma (x))^{2}} = \mathrm {p.v.}\int _{a}^{b}\frac{\left( f(t)/\gamma '(t)\right) '\textrm{d}t}{\gamma (t)-\gamma (x)} - \frac{f(b)}{\gamma '(b)(\gamma (b)\!-\!\gamma (x))} + \frac{f(a)}{\gamma '(a)(\gamma (a)\!-\!\gamma (x))}. \end{aligned}$$
(6.2)

Proof

Let us define

$$\begin{aligned} I(\varepsilon ):=\frac{\varepsilon }{(\gamma (x+\varepsilon )-\gamma (x))^{2}}\quad \text {and}\quad J(\varepsilon ):=\frac{1}{\gamma '(x+\varepsilon )(\gamma (x+\varepsilon )-\gamma (x))},\quad \varepsilon \in \mathbb {R}\setminus \{0\}. \end{aligned}$$

Then we have

$$\begin{aligned}&\int _{a}^{x-\varepsilon }\frac{f(t)\,\textrm{d}t}{(\gamma (t)-\gamma (x))^{2}} = -\int _{a}^{x-\varepsilon }\frac{f(t)}{\gamma '(t)} \left( \frac{1}{\gamma (t)-\gamma (x)}\right) '\,\textrm{d}t \\&\qquad = \int _{a}^{x-\varepsilon } \left( \frac{f(t)}{\gamma '(t)}\right) '\frac{\textrm{d}t}{\gamma (t)-\gamma (x)} -f(x-\varepsilon )J(-\varepsilon ) + \frac{f(a)}{\gamma '(a)(\gamma (a)-\gamma (x))} \end{aligned}$$

and similarly

$$\begin{aligned} \int _{x+\varepsilon }^{b}\frac{f(t)\,\textrm{d}t}{(\gamma (t)-\gamma (x))^{2}} = \int _{x+\varepsilon }^{b} \left( \frac{f(t)}{\gamma '(t)}\right) '\frac{dt}{\gamma (t)-\gamma (x)} +f(x+\varepsilon )J(\varepsilon ) - \frac{f(b)}{\gamma '(b)(\gamma (b)-\gamma (x))}. \end{aligned}$$

Let us write

$$\begin{aligned} R(\varepsilon )&:=-f(x+\varepsilon )I(\varepsilon ) + f(x-\varepsilon )I(-\varepsilon ) +f(x+\varepsilon )J(\varepsilon ) - f(x-\varepsilon )J(-\varepsilon ),\quad \varepsilon \in \mathbb {R}\setminus \{0\}. \end{aligned}$$

By the formula (2.3), to prove (6.2), it is enough to show that \(R(\varepsilon ) = o(1)\) as \(\varepsilon \rightarrow 0\). To this end we observe that

$$\begin{aligned} \begin{aligned} R(\varepsilon )&= f(x+\varepsilon )(J(\varepsilon )-I(\varepsilon )) + f(x-\varepsilon )(I(-\varepsilon ) - J(-\varepsilon )) \\&= f(x)(J(\varepsilon )-I(\varepsilon )) + f(x)(I(-\varepsilon ) - J(-\varepsilon )) \\&\quad - O(\varepsilon )(J(\varepsilon )-I(\varepsilon )) + O(\varepsilon )(I(-\varepsilon ) - J(-\varepsilon ))\quad \text { as }\quad \varepsilon \rightarrow 0. \end{aligned} \end{aligned}$$
(6.3)

Then we have

$$\begin{aligned} \begin{aligned} J(\varepsilon )-I(\varepsilon )&= \frac{\gamma (x+\varepsilon )-\gamma (x) - \varepsilon \gamma '(x+\varepsilon )}{\gamma '(x+\varepsilon )(\gamma (x+\varepsilon )-\gamma (x))^{2}} = \frac{\gamma '(x)\varepsilon +o(\varepsilon ) - \varepsilon (\gamma '(x)+\gamma ''(x)\varepsilon + o(\varepsilon ))}{\gamma '(x+\varepsilon )(\gamma (x+\varepsilon )-\gamma (x))^{2}} \\&= \frac{o(\varepsilon ) - \gamma ''(x)\varepsilon ^{2} + \varepsilon o(\varepsilon )}{\gamma '(x+\varepsilon )(\gamma (x+\varepsilon )-\gamma (x))^{2}},\quad \varepsilon \rightarrow 0, \end{aligned} \end{aligned}$$
(6.4)

which after changing of variables \(\varepsilon \mapsto -\varepsilon \) gives

$$\begin{aligned} \begin{aligned} I(-\varepsilon ) - J(-\varepsilon ) = \frac{o(\varepsilon ) - \gamma ''(x)\varepsilon ^{2} - \varepsilon o(\varepsilon )}{\gamma '(x-\varepsilon )(\gamma (x-\varepsilon )-\gamma (x))^{2}}, \quad \varepsilon \rightarrow 0. \end{aligned} \end{aligned}$$
(6.5)

Combining (6.3), (6.4) and (6.5) provides

$$\begin{aligned} R(\varepsilon ) = f(x)(J(\varepsilon )-I(\varepsilon )) + f(x)(I(-\varepsilon ) - J(-\varepsilon )) + o(1),\quad \varepsilon \rightarrow 0. \end{aligned}$$
(6.6)

Let us observe that

$$\begin{aligned} \begin{aligned}&(J(\varepsilon )-I(\varepsilon ) + I(-\varepsilon ) - J(-\varepsilon ))(\gamma (x-\varepsilon )-\gamma (x)) ^{2}(\gamma (x+\varepsilon )-\gamma (x))^{2}\gamma '(x+\varepsilon )\gamma '(x-\varepsilon ) \\&\quad = -(\gamma (x-\varepsilon )-\gamma (x))(\gamma (x+\varepsilon )-\gamma (x))^{2}\gamma '(x+\varepsilon ) \\&\qquad +(\gamma (x-\varepsilon )-\gamma (x))^{2}(\gamma (x+\varepsilon )-\gamma (x))\gamma '(x-\varepsilon ) \\&\qquad -\varepsilon (\gamma (x-\varepsilon )-\gamma (x))^{2}\gamma '(x+\varepsilon )\gamma '(x-\varepsilon ) \\&\qquad -\varepsilon (\gamma (x+\varepsilon )-\gamma (x))^{2}\gamma '(x+\varepsilon )\gamma '(x-\varepsilon ) \\&\quad = K_{1}(\varepsilon ) - K_{1}(-\varepsilon ) + K_{2}(\varepsilon )-K_{2}(-\varepsilon ) \end{aligned} \end{aligned}$$
(6.7)

for \(\varepsilon \in \mathbb {R}\setminus \{0\}\), where we define

$$\begin{aligned} K_{1}(\varepsilon )&:= -(\gamma (x-\varepsilon )-\gamma (x))(\gamma (x+\varepsilon )-\gamma (x))^{2}\gamma '(x+\varepsilon ) \\ K_{2}(\varepsilon )&:= -\varepsilon (\gamma (x-\varepsilon )-\gamma (x))^{2}\gamma '(x+\varepsilon )\gamma '(x-\varepsilon ). \end{aligned}$$

We show that \(K_{1}(\varepsilon ) - K_{1}(-\varepsilon ) + K_{2}(\varepsilon )-K_{2}(-\varepsilon )=o(\varepsilon ^{4})\) as \(\varepsilon \rightarrow 0\). To this end, we observe that

$$\begin{aligned} K_{1}(\varepsilon )&= - (-\varepsilon \gamma '(x) + \gamma ''(x)\varepsilon ^{2}/2 + o(\varepsilon ^{2}))(\varepsilon \gamma '(x)+\gamma ''(x)\varepsilon ^{2}/2 + o(\varepsilon ^{2}))^{2}(\gamma '(x) + \gamma ''(x)\varepsilon +o(\varepsilon ))\\&= - (-\varepsilon \gamma '(x) + \gamma ''(x)\varepsilon ^{2}/2)(\varepsilon \gamma '(x) + \gamma ''(x)\varepsilon ^{2}/2 + o(\varepsilon ^{2}))^{2}(\gamma '(x) + \gamma ''(x)\varepsilon ) + o(\varepsilon ^{4}) \\&= - (-\varepsilon \gamma '(x) + \gamma ''(x)\varepsilon ^{2}/2)(\varepsilon \gamma '(x) + \gamma ''(x)\varepsilon ^{2}/2)^{2}(\gamma '(x) + \gamma ''(x)\varepsilon ) + o(\varepsilon ^{4}) \\&= - (-\varepsilon ^{2}\gamma '(x)^{2} + \gamma ''(x)^{2}\varepsilon ^{4}/4)(\varepsilon \gamma '(x) + \gamma ''(x)\varepsilon ^{2}/2)(\gamma '(x) + \gamma ''(x)\varepsilon ) + o(\varepsilon ^{4}) \\&= \varepsilon ^{2}\gamma '(x)^{2}(\varepsilon \gamma '(x) + \gamma ''(x)\varepsilon ^{2}/2)(\gamma '(x) + \gamma ''(x)\varepsilon ) + o(\varepsilon ^{4}) \\&= \varepsilon ^{-2}\gamma '(x)^{3}(\varepsilon \gamma '(x) + \gamma ''(x)\varepsilon ^{2}/2) + \varepsilon ^{4}\gamma '(x)^{2}(\gamma '(x) + \gamma ''(x)\varepsilon /2) \gamma ''(x) + o(\varepsilon ^{4}), \end{aligned}$$

as \(\varepsilon \rightarrow 0\), and consequently

$$\begin{aligned} \begin{aligned}&K_{1}(\varepsilon ) - K_{1}(-\varepsilon )= \varepsilon ^{2}\gamma '(x)^{3}(\varepsilon \gamma '(x) + \gamma ''(x)\varepsilon ^{2}/2) - \varepsilon ^{2}\gamma '(x)^{3}(-\varepsilon \gamma '(x) + \gamma ''(x)\varepsilon ^{2}/2)\\&\quad + \varepsilon ^{4}\gamma '(x)^{2}(\gamma '(x)+\gamma ''(x)\varepsilon /2)\gamma ''(x) -\varepsilon ^{4}\gamma '(x)^{2}(\gamma '(x)-\gamma ''(x)\varepsilon /2) \gamma ''(x) + o(\varepsilon ^{4}) \\&= \varepsilon ^{3}\gamma '(x)^{4} + \varepsilon ^{4}\gamma '(x)^{3}\gamma ''(x)/2 + \varepsilon ^{3}\gamma '(x)^{4} - \varepsilon ^{4}\gamma '(x)^{3}\gamma ''(x)/2 + o(\varepsilon ^{4}) \\&= 2\varepsilon ^{3}\gamma '(x)^{4} + o(\varepsilon ^{4})\quad \text { as }\quad \varepsilon \rightarrow 0. \end{aligned} \end{aligned}$$
(6.8)

Furthermore we have

$$\begin{aligned} K_{2}(\varepsilon )&= -\varepsilon (-\gamma '(x)\varepsilon + \gamma ''(x)\varepsilon ^{2}/2 + o(\varepsilon ^{2}))^{2}(\gamma '(x) + \gamma ''(x)\varepsilon + o(\varepsilon ))(\gamma '(x) - \gamma ''(x)\varepsilon +o(\varepsilon ))\\&= -\varepsilon (-\gamma '(x)\varepsilon + \gamma ''(x)\varepsilon ^{2}/2 + o(\varepsilon ^{2}))^{2}(\gamma '(x) + \gamma ''(x)\varepsilon )(\gamma '(x) - \gamma ''(x)\varepsilon ) + o(\varepsilon ^{4}) \\&= -\varepsilon (-\gamma '(x)\varepsilon + \gamma ''(x)\varepsilon ^{2}/2 + o(\varepsilon ^{2}))^{2}\gamma '(x)^{2} + o(\varepsilon ^{4}) \\&= -\varepsilon (-\gamma '(x)\varepsilon + \gamma ''(x)\varepsilon ^{2}/2 )^{2}\gamma '(x)^{2} + o(\varepsilon ^{4}) \\&= -\varepsilon ^{3}\gamma '(x)^{4} +\varepsilon ^{4}\gamma '(x)^{3}\gamma ''(x) + o(\varepsilon ^{4})\quad \text { as }\quad \varepsilon \rightarrow 0, \end{aligned}$$

which implies that

$$\begin{aligned} \begin{aligned} K_{2}(\varepsilon )-K_{2}(-\varepsilon )&=-\varepsilon ^{3}\gamma '(x)^{4} +\varepsilon ^{4}\gamma '(x)^{3}\gamma ''(x)-\varepsilon ^{3}\gamma '(x)^{4} -\varepsilon ^{4}\gamma '(x)^{3}\gamma ''(x)+o(\varepsilon ^{4}) \\&= -2\varepsilon ^{3}\gamma '(x)^{4}+ o(\varepsilon ^{4})\quad \text { as }\quad \varepsilon \rightarrow 0. \end{aligned} \end{aligned}$$
(6.9)

Combining (6.6), (6.7), (6.8) and (6.9) we obtain

$$\begin{aligned} R(\varepsilon )&= \frac{K_{1}(\varepsilon ) - K_{1}(-\varepsilon ) + K_{2}(\varepsilon )-K_{2} (-\varepsilon )}{(\gamma (x-\varepsilon )-\gamma (x))^{2}(\gamma (x+\varepsilon ) -\gamma (x))^{2}\gamma '(x+\varepsilon )\gamma '(x-\varepsilon )} + o(1) \\&= \frac{o(\varepsilon ^{4})}{(\gamma (x-\varepsilon )-\gamma (x))^{2}(\gamma (x+\varepsilon ) -\gamma (x))^{2}\gamma '(x+\varepsilon )\gamma '(x-\varepsilon )} + o(1) = o(1) \end{aligned}$$

as \(\varepsilon \rightarrow 0\) and the proof of the proposition is completed. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cieślak, T., Kokocki, P. & Ożański, W.S. Linear Instability of Symmetric Logarithmic Spiral Vortex Sheets. J. Math. Fluid Mech. 26, 21 (2024). https://doi.org/10.1007/s00021-023-00847-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00847-y

Keywords

Mathematics Subject Classification

Navigation