Skip to main content
Log in

Data Assimilation to the Primitive Equations with \(L^p\)-\(L^q\)-based Maximal Regularity Approach

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we show a mathematical justification of the data assimilation of nudging type in \(L^p\)-\(L^q\) maximal regularity settings. We prove that the approximate solution of the primitive equations constructed by the data assimilation converges to the true solution with exponential order in the Besov space \(B^{2/q}_{q,p}(\Omega )\) for \(1/p + 1/q \le 1\) on the periodic layer domain \(\Omega = \mathbb {T}^2 \times (-h, 0)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166(1), 245–267 (2007)

    Article  MathSciNet  Google Scholar 

  2. Guillén-González, F., Masmoudi, N., Rodríguez-Bellido, M.A.: Anisotropic estimates and strong solutions of the primitive equations. Differ. Integral Equ. 14(1), 1381–1408 (2001)

    MathSciNet  Google Scholar 

  3. Kukavica, I., Ziane, M.: On the regularity of the primitive equations of the ocean. Nonlinearity 20(12), 2739–2753 (2007). https://doi.org/10.1088/0951-7715/20/12/001

    Article  ADS  MathSciNet  Google Scholar 

  4. Hieber, M., Kashiwabara, T.: Global strong well-posedness of the three dimensional primitive equations in \(l^p\)-spaces. Arch. Rational Mech. Anal. 1077-1115 (2016)

  5. Giga, Y., Gries, M., Hieber, M., Hussein, A., Kashiwabara, T.: Analyticity of solutions to the primitive equations. Math. Nachr. 293(2), 284–304 (2020)

    Article  MathSciNet  Google Scholar 

  6. Azouani, A., Olson, E., Titi, E.S.: Continuous data assimilation using general interpolant observables. J. Nonlinear Sci. 24(2), 277–304 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  7. Albanez, D.A.F., Nussenzveig, L.H.J., Titi, E.S.: Continuous data assimilation for the three-dimensional Navier-Stokes-\(\alpha \) model. Asymptot. Anal. Asymptotic Anal. 97(1–2), 139–164 (2016)

    Article  MathSciNet  Google Scholar 

  8. Pei, Y.: Continuous data assimilation for the 3D primitive equations of the ocean. Commun. Pure Appl. Anal. 18(2), 643–661 (2019)

    Article  MathSciNet  Google Scholar 

  9. Prüss, J., Simonett, G.: Moving Interfaces and Quasi linear Parabolic Evolution Equations, Monographs in Mathematics, 105, Birkhäuser, Springer, Cham, xix+609 (2016)

  10. Hieber, M., Hussein, A., Kashiwabara, T.: Global strong \(L^p\) well-posedness of the 3D primitive equations with heat and salinity diffusion. J. Differ. Equ. 261, 6950–6981 (2016)

    Article  ADS  Google Scholar 

  11. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194, Springer, New York (2000)

  12. Kunstmann, P.C., Weis, L.: Maximal \(L_p\)-regularity for parabolic equations. Fourier multiplier theorems and \(H^\infty \)-functional calculus, Functional analytic methods for evolution equations, Lecture Notes in Math. 65–311, 2004. Springer, Berlin (1855)

  13. Lasiecka, I., Wilke, M.: Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete Contin. Dyn. Syst. 33(11–12), 5189–5202 (2013)

    Article  MathSciNet  Google Scholar 

  14. Prüss, J., Wilke, M.: Addendum to the paper “On quasilinear parabolic evolution equations in weighted Lp-spaces II’’, MR 3250797. J. Evol. Equ. 17(4), 1381–1388 (2017)

    Article  MathSciNet  Google Scholar 

  15. Prüss, J., Simonett, G.: Maximal regularity for evolution equations in weighted \(L^p\)-spaces. Arch. Math. (Basel) 82(5), 415–431 (2004)

    Article  MathSciNet  Google Scholar 

  16. Sohr, H.: The Navier–Stokes equations, Birkhäuser Advanced Texts: Basler Lehrbücher., Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, x+367 (2001)

Download references

Acknowledgements

The author would like to thank Prof. Takahito Kashiwabara of the University of Tokyo and the members of Data Assimilation Research Team in RIKEN for helpful discussions and comments for this research. The author would also like to thank the anonymous referees for their careful reading and valuable comments. The author was partly supported by RIKEN Pioneering Project “Prediction for Science” and JSPS Grant-in-Aid for Young Scientists (No. 22K13948).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Furukawa.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Additional information

Communicated by M. Hieber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: \(L^2_t H^3_x\) Estimate for the Solution to the Primitive Equations

In this appendix, we show the \(L^2_t H^3_x\) a priori estimate

$$\begin{aligned} \Vert \Delta v (t) \Vert _{L^2(\Omega )^2} + \int _0^t \Vert \nabla \Delta v (t) \Vert _{L^2(\Omega )^6} ds < \infty \end{aligned}$$
(A1)

for all \(t>0\) if \(f \in L^2_t H^1_x ((0, \infty ) \times \Omega )\). Although Giga et   al. [5] proved \(L^\infty _t H^2_x\)-estimates and the lower order estimates, they did not show \(L^2_t H^3_x\)-a priori estimates. Let \(\psi \in H^1_t L^2_{\overline{\sigma }, x}((0, \infty ) \times \Omega ) \cap L^2_t H^2_{\sigma , x} ((0, \infty )\times \Omega )\) be a solution of the hydrostatic Stokes equations

$$\begin{aligned}&\partial _t \psi + A_2 \psi = g \in L^2_t H^1_{\overline{\sigma }, x} ((0, \infty ) \times \Omega ), \end{aligned}$$
(A2)
$$\begin{aligned}&\psi (0) = \psi _0 \in H^2_{\overline{\sigma }}(\Omega ), \end{aligned}$$
(A3)

with boundary conditions (2). Note that we have the local well-posedness for the primitive equation from [5]. The local solution v is embedded into \(C(0,T_0; H^2_{\overline{\sigma }}(\Omega )^2)\) for some small \(T_0>0\). A priori estimates are used to extend the local solution globally. Therefore, without loss of generality, we can assume (A3). Assume that \(\psi \) satisfies

$$\begin{aligned} \int _0^t \Vert \nabla \partial _t \psi (s) \Vert _{L^2 (\Omega )^6} ds < \infty \end{aligned}$$
(A4)

for all \(t > 0\). We denote \(D^h_j \psi (x) = (\psi (x + h e_j) - \psi (x))/h\) for \(j = 1, 2, 3\) and \(h > 0\). Then \(D^h_j \psi \) satisfies (A2) with an external force \(D^h_j g\) and initial data \(D^h_j \psi _0\). We find that

$$\begin{aligned}&\int ^t_0 \Vert \Delta D^h_j \psi \Vert _{L^2(\Omega )^2}^2 ds \le C \int ^t_0 \Vert A_2 D^h_j \psi \Vert _{L^2(\Omega )^2}^2 ds \\&\quad \le C \int ^t_0 \Vert D^h_j \partial _t \psi \Vert _{L^2(\Omega )^2}^2 ds + C \int ^t_0 \Vert D^h_j g \Vert _{L^2(\Omega )^2}^2 ds\\&\quad \le C \int ^t_0 \Vert \partial _j \partial _t \psi \Vert _{L^2(\Omega )^2}^2 ds + C \int ^t_0 \Vert \partial _j g \Vert _{L^2(\Omega )^2}^2 ds. \end{aligned}$$

Since the right-hand side is uniform with respect to \(h>0\), we take a \(\limsup \) to get

$$\begin{aligned} \int ^t_0 \Vert \partial _j \psi \Vert _{H^2(\Omega )^2}^2 ds \le C \int ^t_0 \Vert \partial _j \partial _t \psi \Vert _{L^2(\Omega )^2}^2 ds + C \int ^t_0 \Vert \partial _j g \Vert _{L^2(\Omega )^2}^2 ds. \end{aligned}$$

The reader is referred to Section 3.1.5 and 4.2.7 of the book [16] by Sohr. Therefore, we see that

$$\begin{aligned}&\int _0^t \Vert \partial _j v \Vert _{H^2(\Omega )^2}^2 ds \\&\quad \le C \int _0^t \Vert \partial _t \partial _j v \Vert _{L^2(\Omega )^2}^2 ds \\&\quad + C \int _0^t \Vert \partial _j \left( v \cdot \nabla _H v + w \partial _3 v \right) \Vert _{L^2(\Omega )^2}^2 ds \\&\quad + C \int _0^t \Vert \partial _j f \Vert _{L^2(\Omega )^2}^2 dx. \end{aligned}$$

The boundedness of the first term was shown in [5]. The Sobolev inequalities and the interpolation inequalities yield

$$\begin{aligned}&\int _\Omega \left| \nabla v \cdot \nabla _H v \right| ^2 dx \le C \Vert \nabla v \Vert _{L^4(\Omega )^6}^2 \le C \Vert \nabla v \Vert _{L^2(\Omega )^6}^{3/2} \Vert \nabla v \Vert _{H^1(\Omega )^6}^{1/2}, \\&\int _\Omega \left| v \cdot \nabla \nabla _H v \right| ^2 dx \le C \Vert v \Vert _{L^\infty (\Omega )^2} \Vert {\nabla \nabla _H} v \Vert _{L^2(\Omega )^{12}} \le C \Vert v \Vert _{H^1(\Omega )^2}^{\frac{1}{2}} \Vert v \Vert _{H^2(\Omega )^2}^\frac{1}{2} \Vert v \Vert _{\dot{H}^2(\Omega )^2}. \end{aligned}$$

In the same way, we see that

$$\begin{aligned} \int _\Omega \left| \nabla w \partial _3 v \right| ^2 dx&\le C \Vert \nabla v \Vert _{L^2(\Omega )^6} \Vert \nabla v \Vert _{H^1(\Omega )^6} \Vert \partial _3 v \Vert _{L^2(\Omega )^2} \Vert \partial _3 v\Vert _{H^1(\Omega )^2}\\&\le C \Vert v \Vert _{H^1(\Omega )^2}^2 \Vert \nabla v \Vert _{H^1(\Omega )^6}^2,\\ \int _\Omega \left| w \nabla \partial _3 v \right| ^2 dx&\le C \Vert \nabla _H v \Vert _{L^2(\Omega )^4} \Vert \nabla _H v \Vert _{H^1(\Omega )^4} \Vert \partial _3 v \Vert _{L^2(\Omega )^2} \Vert \partial _3 v \Vert _{H^1(\Omega )^2}\\&\le C \Vert v \Vert _{H^1(\Omega )^2}^2 \Vert \nabla v \Vert _{H^1(\Omega )^6}^2. \end{aligned}$$

Using the Young inequality, we obtain (A1).

Appendix B: Remarks for Semi-Group Based Approach

The main result of this paper is a mathematical justification of the DA in \(L^p\)-\(L^q\) based maximal regularity settings. However, the analytic semi-group based approach as used by Hieber and Kashiwabara [4] can be applicable. As in [4], we set

$$\begin{aligned}&{\mathcal {S}}_{q, \eta , T} = \left\{ v \in C([0, T]; H^{2/q, q}_{\overline{\sigma }}(\Omega )) \cap C((0, T]; H^{1 + 1/q, q}_{\overline{\sigma }}(\Omega )) \, ; \, \Vert v \Vert _{{\mathcal {S}}_{q, \eta , T}}< \infty \right\} , \\&\Vert v \Vert _{{\mathcal {S}}_{q, \eta , T}} := \sup _{0< t< T} e^{\eta t} \Vert v(t) \Vert _{H^{2/q, q}_{\overline{\sigma }}(\Omega )} + \sup _{0< t< T} e^{\eta t} t^{1/2 - 1/2q} \Vert v(t) \Vert _{H^{1 + 1/q, q}_{\overline{\sigma }}(\Omega )}, \\&\widetilde{{\mathcal {S}}}_{q, \eta , T} = \left\{ v \in C((0, T]; H^{1 + 1/q, q}_{\overline{\sigma }}(\Omega )^2) \, ; \, \Vert v \Vert _{\widetilde{{\mathcal {S}}}_{q, \eta , T}}< \infty \right\} , \\&\Vert v \Vert _{\widetilde{{\mathcal {S}}}_{q, \eta , T}} := \sup _{0< t < T} e^{\eta t} t^{1/2 - 1/2q} \Vert v(t) \Vert _{H^{1 + 1/q, q}_{\overline{\sigma }}(\Omega )}. \end{aligned}$$

We also set \(X_q = \left\{ \varphi \in H^{2/q, q}_{\overline{\sigma }}(\Omega )^2 \, ; \, \varphi \vert _{\Gamma _b = 0} \right\} \). Using the same kind of method based on analytic semi-group theory as [4, 10], we can show

Theorem B.1

Let \(1< p < \infty \) and \(0< \alpha < 1\). Let \(v_0 \in X_q\) be an initial datum. Let \(f \in H^1_{loc} (0, \infty ; L^q(\Omega )^2)\) satisfy

$$\begin{aligned} \sup _{t>0} e^{\gamma _0 t} \Vert f(s) \Vert _{L^q(\Omega )^2} + \sup _{0< s< t} e^{\gamma _0 s} s^{1 - \frac{1}{q}} \Vert f (s) \Vert _{L^q(\Omega )^2}&< \infty ,\\ \Vert f \Vert _{H^1_{loc}(0, \infty ; L^2(\Omega )^2 \cap L^q(\Omega )^2)} + \Vert e^{\gamma _0 t} f \Vert _{L^2(0, \infty ; H^1(\Omega )^2)}&< \infty , \end{aligned}$$

for some constant \(\gamma _0 > 0\). Assume that \(v \in C(0, \infty ; X_q)\) is the solution to (1), which is obtained by Hieber et al. [10] with zero temperature and salinity, satisfying

$$\begin{aligned} \Vert v \Vert _{{\mathcal {S}}_{q, \gamma _1, \infty }} < \infty \end{aligned}$$
(B5)

for some constant \(C_0>0\) and \(\gamma _1 < \gamma _0\). Then there exist \(\mu _0, \delta _0>0\) such that if \(\mu \ge \mu _0\) and \(\delta \le \delta _0\), there exists a unique solution \(V \in C(0, \infty ;X_{1/q, p, q})\) to (4) such that

$$\begin{aligned} \Vert {V} \Vert _{{\mathcal {S}}_{q, {\mu _*}, \infty }} < \infty \end{aligned}$$

for some constants \(\gamma _0< \mu _*< \gamma _1\) and \(C>0\). Moreover, V satisfies

$$\begin{aligned} \Vert \partial _t V (t) \Vert _{L^q(\Omega )^2} + \Vert V (t) \Vert _{D(\tilde{A}_{q, \mu })} = O(e^{- \mu _*t /2}). \end{aligned}$$

Remark 5

The assumption on the regularity for the initial data in Theorem B.1 is stronger than Theorem 1 since \(H^{2/q, q}(\Omega ) \hookrightarrow B^{2/q}_{q, p}(\Omega )\) for \(p > 2\).

We show the local well-posedness in \(C(0,T_*; L^q(\Omega )^2)\)-framework with the analytic semi-group \(e^{- t \tilde{A}_{\mu , q}}\) and the Fujita-Kato principle. The mild solution is given by

$$\begin{aligned} \begin{aligned} V (t)&= e^{- t \tilde{A}_{\mu , q}} V_0 \\&\quad +\,\int _0^t e^{- (t - s) \tilde{A}_{\mu , q}} P \left( - U (s) \cdot \nabla V (s) + u (s) \cdot \nabla V (s) \right. \\&\left. + U (s) \cdot \nabla v (s) \right) ds \\&\quad +\,\int _0^t e^{- (t - s) \tilde{A}_{\mu , q}} P F(s) ds \\&=: N_1(V, v) + N_2(F) := N(V, v). \end{aligned} \end{aligned}$$
(B6)

Lemma B.2

Let \(T>0\), \(0 \le \tilde{\mu } \le \mu _*\), and \(V_0, v_0 \in H^{2/q, q}(\Omega )^2\). Let \(F \in C(0, T; L^q(\Omega )^2)\) satisfy

$$\begin{aligned} \sup _{0< s< T} e^{\gamma _0 s} s^{1 - \frac{1}{q}} \Vert F (s) \Vert _{L^q(\Omega )^2} < \infty \end{aligned}$$

for some constant \(\gamma _0 > 0\). Let v satisfy the same assumptions as Theorem B.1. Then, there exists \(T_0 > 0\) such that if \(T \le T_0\), the integral Eq. (B6) admit the unique solution \(V \in C(0,T; H^{2/q, q}_{\overline{\sigma }}(\Omega )^2)\) such that

$$\begin{aligned} \Vert V \Vert _{{{\mathcal {S}}_{q, \tilde{\mu },T}}} \le C. \end{aligned}$$
(B7)

Moreover, there exists \(\varepsilon _0>0\) such that if

$$\begin{aligned} \Vert v_0 \Vert _{H^{2/q, q}(\Omega )^2}, \sup _{0< s < T} e^{\gamma _0 s} s^{1 - \frac{1}{q}} \Vert f(s) \Vert _{L^q(\Omega )^2} \le \varepsilon _0, \end{aligned}$$

it can be taken \(T = \infty \).

Proof

The proof is based on Proposition 5.2 in [4]. We prove that

$$\begin{aligned} N : {{\mathcal {S}}_{q, \tilde{\mu },T}} {\times {{\mathcal {S}}_{q, \tilde{\mu },T}}} \rightarrow {{\mathcal {S}}_{q, \tilde{\mu },T}} \end{aligned}$$

is a contraction mapping if T is small or \(v_0\) and F are small. We find from Proposition 6 that

$$\begin{aligned} \begin{aligned}&e^{\tilde{\mu }t} \Vert N_1(V, v) \Vert _{H^{2/q, q}(\Omega )^2} \\&\quad \le \int _0^t e^{\tilde{\mu }t} e^{- \mu _*(t - s)} (t - s)^{ - \frac{1}{q}} \\&\quad \times \left( \Vert U (s) \cdot \nabla V (s) \Vert _{L^q(\Omega )^2} + \Vert u (s) \cdot \nabla V (s) \Vert _{L^q(\Omega )^2} + \Vert U (s) \cdot \nabla v (s) \Vert _{L^q(\Omega )^2} \right) ds \\&\quad \le C \int _0^t e^{\tilde{\mu } (t - s)} e^{ - \mu _*(t - s)} (t - s)^{ - \frac{1}{q}} s^{- 1 - 1/q} ds {\left( \Vert V \Vert _{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}}^2 + \Vert V \Vert _{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}} \Vert v \Vert _{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}} \right) }\\&\quad \le {C \Vert V \Vert _{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}}^2 + C \Vert V \Vert _{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}} \Vert v \Vert _{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}}.} \end{aligned} \end{aligned}$$
(B8)

We also find from Propositions 4 and 6 that

$$\begin{aligned}&e^{\tilde{\mu }t} \Vert N_1(V, v) \Vert _{H^{1 + 1/q, q}(\Omega )^2} \\&\quad \le \int _0^t e^{\tilde{\mu }t} e^{- \mu _*(t - s)} (t - s)^{ - \frac{1}{2} - \frac{1}{2q}} \\&\quad \times \left( \Vert U (s) \cdot \nabla V (s) \Vert _{L^q(\Omega )^2} + \Vert u (s) \cdot \nabla V (s) \Vert _{L^q(\Omega )^2} + \Vert U (s) \cdot \nabla v (s) \Vert _{L^q(\Omega )^2} \right) ds \\&\quad \le C t^{- \frac{1}{2} + \frac{1}{2q}} \Vert V \Vert _{{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}}}^2 + C \Vert V \Vert _{{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}}} \Vert v \Vert _{{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}}}. \end{aligned}$$

Similarly we have

$$\begin{aligned}&e^{\tilde{\mu }t} \Vert N_1(V_1, v) - N_1(V_2, v) \Vert _{H^{1 + 1/q, q}(\Omega )^2} \\&\quad \le C \Vert V_1 - V_2 \Vert _{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}} \left( \Vert V_1 \Vert _{{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}}} + \Vert V_2 \Vert _{{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}}} + \Vert v \Vert _{{\widetilde{{\mathcal {S}}}_{q, \tilde{\mu }, T}}} \right) . \end{aligned}$$

Since \(e^{- t \tilde{A}_{\mu , q}}\) is analytic for t, we can observe that

$$\begin{aligned}&e^{\tilde{\mu }t} \Vert e^{- t \tilde{A}_{\mu , q}} V_0 \Vert _{H^{2/q, q}(\Omega )^2} \le C \Vert V_0 \Vert _{H^{2/q, q}(\Omega )^2}, \\&e^{\tilde{\mu }t} \Vert e^{- t \tilde{A}_{\mu , q}} V_0 \Vert _{H^{1 + 1/q, q}(\Omega )^2} \le C t^{- \frac{1}{2} + \frac{1}{2q}} \Vert V_0 \Vert _{H^{2/q, q}(\Omega )^2}. \end{aligned}$$

Moreover, since \(D(\tilde{A}_{\mu , q})\) is densely embedded into \(H^{s, q}(\Omega )^2\) for \(s \in [0, 2)\), we see that

$$\begin{aligned} \Vert e^{- t \tilde{A}_{\mu , q}} V_0 \Vert _{H^{2/q, q}(\Omega )^2} \rightarrow 0 \quad \text {as} \quad t \rightarrow 0. \end{aligned}$$

We find from Proposition 4 that

$$\begin{aligned}&e^{\tilde{\mu }t} \left\| \int _0^t e^{- (t - s) \tilde{A}_{\mu , q}} F (s) ds \right\| _{H^{2/q, q}(\Omega )^2} \\&\quad \le C \int _0^t e^{\tilde{\mu }t} e^{- \mu _*(t - s)} (t - s)^{- \frac{1}{q}} \Vert F (s) \Vert _{L^q(\Omega )^2} ds \\&\quad \le C \sup _{0< s < t} e^{\tilde{\mu }s} s^{1 - \frac{1}{q}} \Vert F (s) \Vert _{L^q(\Omega )^2}, \end{aligned}$$

and

$$\begin{aligned}&e^{\tilde{\mu }t} \left\| \int _0^t e^{- (t - s) \tilde{A}_{\mu , q}} F (s) ds \right\| _{H^{1 + 1/q, q}(\Omega )^2} \\&\quad \le \int _0^t e^{\tilde{\mu }t} e^{- \mu _*(t - s)} (t - s)^{ - \frac{1}{2} - \frac{1}{2q}} \Vert F (s) \Vert _{L^q(\Omega )^2} ds \\&\quad \le C t^{- \frac{1}{2} + \frac{1}{2q}} \sup _{0< s < t} e^{\tilde{\mu }s} s^{1 - \frac{1}{q}} \Vert F (s) \Vert _{L^q(\Omega )^2}. \end{aligned}$$

Combining the above estimates, we obtain the quadratic inequality

$$\begin{aligned}&\Vert N(V, v) \Vert _{\widetilde{{\mathcal {S}}}_{\tilde{\mu }, q, T}} \\&\quad \le C_2 \Vert V \Vert _{\widetilde{{\mathcal {S}}}_{\tilde{\mu }, q, T}}^2 + C_1 \Vert V \Vert _{\widetilde{{\mathcal {S}}}_{\tilde{\mu }, q, T}} \Vert v \Vert _{\widetilde{{\mathcal {S}}}_{\tilde{\mu }, q, T}} \\&\quad + C_0 \left( \sup _{0< t< T} e^{\tilde{\mu }t} t^{\frac{1}{2} - \frac{1}{2q}} \Vert e^{- t \tilde{A}_{\mu , q}} V_0 \Vert _{H^{1 + 1/q, q}(\Omega )^2} + C \sup _{0< s < t} e^{\tilde{\mu }s} s^{1 - \frac{1}{q}} \Vert F (s) \Vert _{L^q(\Omega )^2} \right) . \end{aligned}$$

We assume that \(\Vert v \Vert _{\widetilde{{\mathcal {S}}}_{\tilde{\mu }, q, T}} \le \frac{1}{2C_1}\) is sufficiently small.

The quadratic estimate implies that, if we take \(T>0\) so small or \(\Vert V_0 \Vert _{H^{2/q, q}(\Omega )^2}\) and \(\sup _{0< s < t} e^{\tilde{\mu }s} s^{1 - \frac{1}{q}} \Vert F (s) \Vert _{L^q(\Omega )^2}\) so small that

$$\begin{aligned} R&:= 16 C_2 C_0 ( \sup _{0< t< T} e^{\tilde{\mu }t} t^{\frac{1}{2} - \frac{1}{2q}} \Vert e^{- t \tilde{A}_{\mu , q}} V_0 \Vert _{H^{1 + 1/q, q}(\Omega )^2} \\&+ C \sup _{0< s < t} e^{\tilde{\mu }s} s^{1 - \frac{1}{q}} \Vert F (s) \Vert _{L^q(\Omega )^2} ) \le \frac{1}{2}, \end{aligned}$$

then

$$\begin{aligned} \Vert V \Vert _{\widetilde{{\mathcal {S}}}_{\tilde{\mu }, q, T}} \le \frac{ 1 - \sqrt{ 1 - R } }{2 C_2} =: R_*. \end{aligned}$$

We find that \(N (\cdot , v)\) is a self-mapping on \(\left\{ V \in \widetilde{{\mathcal {S}}}_{\tilde{\mu }, q, T} \, ; \, \Vert V \Vert _{\widetilde{{\mathcal {S}}}_{\tilde{\mu }, q, T}} < R_* \right\} \). We take R and \(\Vert v \Vert _{\widetilde{{\mathcal {S}}}_{\tilde{\mu }, q, T}}\) sufficiently sufficiently small again. Then \(N (\cdot , v)\) is a contraction mapping. Banach’s fixed point theorem implies that there exists a unique mild solution V to (B6) in \(\widetilde{{\mathcal {S}}}_{\tilde{\mu }, q, T}\). The estimate (B8) implies that \(N (V, v) \in {\mathcal {S}}_{\tilde{\mu }, q, T}\), so \(V \in {\mathcal {S}}_{\tilde{\mu }, q, T}\). \(\square \)

We improve the regularity of the solution V to (B6) for regular F.

Proposition B.3

Let \(0 \le \tilde{\mu } \le \mu _*\), \(T > 0\), and \(1< q < \infty \). Let \(f \in C^\alpha (0, T; L^q(\Omega )^2)\) such that

$$\begin{aligned} \begin{aligned}&\Vert f (t) \Vert _{L^q(\Omega )^2} \le C t^{- \beta } e^{-\gamma t}, \\&\Vert f (t + \tau ) - f (t) \Vert _{L^q(\Omega )^2} \le C \tau ^{\alpha } t^{- \beta } e^{-\gamma t}, \end{aligned} \end{aligned}$$
(B9)

for \(0< \alpha < 1\) and \(\beta , \gamma > 0\). Set \(\phi \) such that

$$\begin{aligned} \phi (t) = \int _{0}^t e^{- (t - s)\tilde{A}_{\mu , q}} P f ds. \end{aligned}$$

Then \(\phi \) satisfies

$$\begin{aligned} \Vert \phi (t) \Vert _{L^q(\Omega )^2} \le C t^{1 - \beta } ( e^{- \gamma t} + e^{- \mu _*t/2} ) \end{aligned}$$

and

$$\begin{aligned}&\Vert \partial _t \phi (t) \Vert _{L^q(\Omega )^2} + \Vert \tilde{A}_{\mu , q} \phi (t) \Vert _{L^q(\Omega )^2} \\&\le C ( t^{\alpha - \beta }e^{- \gamma t/2} + t^{- \beta } e^{- (\mu _*/2 + \gamma ) t} + t^{- \beta } e^{- \mu _*t /2} ) \end{aligned}$$

for some constant \(C > 0\). In particular, if \(\mu _*\le \gamma \), it follows that

$$\begin{aligned} \Vert \partial _t \phi (t) \Vert _{L^q(\Omega )^2} + \Vert \tilde{A}_{\mu , q} \phi (t) \Vert _{L^q(\Omega )^2} = O(t^{-\beta } e^{{-}\mu _*/2}). \end{aligned}$$

Proof

Since the proof is quite parallel as Lemma 5.6 in [4], we omit the details here. \(\square \)

Proof of Theorem B.1

By Proposition 7 for \(p = q = 2\), we first deduce that there exists an \(L^2\)-solution \(V \in C(0, \infty ; H^1(\Omega )^2) \cap C(0, T; D(\tilde{A}_{2, \mu }))\) such that

$$\begin{aligned} \Vert V(t) \Vert _{H^1(\Omega )^2} \le C e^{- \mu _*t} \end{aligned}$$

for some constant \(C>0\). Moreover, we repeat the same argument as in the proof of Theorem 1 for \(p = q = 2\) to see that there exist small \(\varepsilon > 0\) and large \(T_*> 0\) such that \(\Vert V (T_*) \Vert _{D(\tilde{A}_{2, \mu })} \le \varepsilon \). Applying Lemma B.2, we have \(V \in {\mathcal {S}}_{q, {\mu _*}, \infty }\). By the assumptions for f and Proposition 6, we see that

$$\begin{aligned} \begin{aligned}&\Vert F \Vert _{L^2(\Omega )} = O (e^{- \gamma _0 t}), \\&\Vert U(t) \cdot \nabla V(t) \Vert _{L^2(\Omega )} = O(e^{- 2 \mu _*t}), \\&\Vert u(t) \cdot \nabla V(t) \Vert _{L^2(\Omega )} + \Vert U(t) \cdot \nabla v(t) \Vert _{L^2(\Omega )} = O(e^{- (\gamma _1 + \mu _*) t}), \end{aligned} \end{aligned}$$
(B10)

as \(t \rightarrow \infty \). We use Proposition B.3 to conclude that

$$\begin{aligned} \Vert \partial _t V (t) \Vert _{L^2(\Omega )^2} + \Vert V (t) \Vert _{D(\tilde{A}_{2, \mu })} = O(e^{- \mu _*t /2}). \end{aligned}$$
(B11)

Note that if we take \(\mu \) sufficiently large, the decay rate \(e^{- \mu _*t /2}\) is larger than that of \(\Vert \partial _t v (t) \Vert _{L^2(\Omega )^2} + \Vert v(t) \Vert _{D(A_2)}\). Proposition B.2 implies that there exists a unique solution in \({\mathcal {S}}_{q, \mu _*, T_*}^\prime \) for small \(T_*^\prime > 0\) and all \(1< q < \infty \). We consider the case \(q > 2\). In this case, we have \(V(t) \in H^{1 + 1/q,q}(\Omega )^2 \hookrightarrow H^1(\Omega )^2\) for \(0< t < T_*^\prime \). We can extend V as \(H^1\)-solution with initial data \(V(T_*^\prime )\) such that

$$\begin{aligned} \begin{aligned} V \in {\mathcal {S}}_{q, \mu _*, T_*^\prime } \cap C(T_*^\prime /2, \infty ; H^1_{\overline{\sigma }}(\Omega )) \cap C(T_*^\prime /2, \infty ; H^2(\Omega )^2), \\ \Vert V (t) \Vert _{H^2(\Omega )^2 } = O(e^{- \mu _*t /2}) \quad \text {as} \rightarrow \infty . \end{aligned} \end{aligned}$$
(B12)

Since \(H^2(\Omega )^2 \hookrightarrow H^{2/q, q}(\Omega )^2\), we see that \(V \in {\mathcal {S}}_{q, \mu _*, \infty }\). By Proposition 6, we have the same order decay estimate as (B10) even for \(L^q\) cases and conclude that

$$\begin{aligned} \Vert \partial _t V (t) \Vert _{L^q(\Omega )^2} + \Vert V (t) \Vert _{D(\tilde{A}_{q, \mu })} = O(e^{- \mu _*t /2}) \end{aligned}$$

for \(q > 2\). We consider the case \(q < 2\). Since \(f \in L^2(0, \infty ;L^2(\Omega )^2)\) we find from the same type of bootstrapping argument as in [10] that V is also an \(L^2\)-solution satisfying (B12). Since \(D(\tilde{A}_{\mu _*, 2}) \hookrightarrow X_q\), we can extend the solution V globally in \(X_q\) and find that V satisfies (B11). We proved the theorem. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukawa, K. Data Assimilation to the Primitive Equations with \(L^p\)-\(L^q\)-based Maximal Regularity Approach. J. Math. Fluid Mech. 26, 9 (2024). https://doi.org/10.1007/s00021-023-00843-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00843-2

Keywords

Navigation