Skip to main content
Log in

Well-Posedness of Solutions to Stochastic Fluid–Structure Interaction

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper we introduce a constructive approach to study well-posedness of solutions to stochastic fluid–structure interaction with stochastic noise. We focus on a benchmark problem in stochastic fluid–structure interaction, and prove the existence of a unique weak solution in the probabilistically strong sense. The benchmark problem consists of the 2D time-dependent Stokes equations describing the flow of an incompressible, viscous fluid interacting with a linearly elastic membrane modeled by the 1D linear wave equation. The membrane is stochastically forced by the time-dependent white noise. The fluid and the structure are linearly coupled. The constructive existence proof is based on a time-discretization via an operator splitting approach. This introduces a sequence of approximate solutions, which are random variables. We show the existence of a subsequence of approximate solutions which converges, almost surely, to a weak solution in the probabilistically strong sense. The proof is based on uniform energy estimates in terms of the expectation of the energy norms, which are the backbone for a weak compactness argument giving rise to a weakly convergent subsequence of probability measures associated with the approximate solutions. Probabilistic techniques based on the Skorohod representation theorem and the Gyöngy–Krylov lemma are then employed to obtain almost sure convergence of a subsequence of the random approximate solutions to a weak solution in the probabilistically strong sense. The result shows that the deterministic benchmark FSI model is robust to stochastic noise, even in the presence of rough white noise in time. To the best of our knowledge, this is the first well-posedness result for stochastic fluid–structure interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aubin, J.-P.: Un théorème de compacité. C. R. Acad. Sci. Paris 256(24), 5042–5044 (1963)

    MathSciNet  Google Scholar 

  2. Barbu, V., Grujić, Z., Lasiecka, I., Tuffaha, A.: Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model. In: Fluids and Waves, volume 440 of Contemp. Math., pp. 55–82. American Mathematical Society, Providence (2007)

  3. Barbu, V., Grujić, Z., Lasiecka, I., Tuffaha, A.: Smoothness of weak solutions to a nonlinear fluid–structure interaction model. Indiana Univ. Math. J. 57(3), 1173–1207 (2008)

    MathSciNet  Google Scholar 

  4. Beirão da Veiga, H.: On the existence of strong solutions to a coupled fluid–structure evolution problem. J. Math. Fluid Mech. 6(1), 21–52 (2004)

    ADS  MathSciNet  Google Scholar 

  5. Bensoussan, A., Glowinski, R., Rǎşcanu, A.: Approximation of some stochastic differential equations by the splitting up method. Appl. Math. Optim. 25, 81–106 (1992)

    MathSciNet  Google Scholar 

  6. Bensoussan, A., Temam, R.: Equations stochastiques du type Navier–Stokes. J. Funct. Anal. 13(2), 195–222 (1973)

    Google Scholar 

  7. Capiński, M., Gatarek, D.: Stochastic equations in Hilbert space with application to Navier–Stokes equations in any dimension. J. Funct. Anal. 126(1), 26–35 (1994)

    MathSciNet  Google Scholar 

  8. Chambolle, A., Desjardins, B., Esteban, M.J., Grandmont, C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7(3), 368–404 (2005)

    ADS  MathSciNet  Google Scholar 

  9. Cheng, C.H.A., Coutand, D., Shkoller, S.: Navier–Stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal. 39(3), 742–800 (2007)

    MathSciNet  Google Scholar 

  10. Cheng, C.H.A., Shkoller, S.: The interaction of the 3D Navier–Stokes equations with a moving nonlinear Koiter elastic shell. SIAM J. Math. Anal. 42(3), 1094–1155 (2010)

    MathSciNet  Google Scholar 

  11. Ciarlet, P.G.: Mathematical Elasticity. Volume I: Three-Dimensional Elasticity, volume 20 of Studies in Mathematics and Its Applications. Elsevier Science Publishers B.V., Amsterdam (1988)

  12. Conus, D., Dalang, R.C.: The non-linear stochastic wave equation in high dimensions. Electron. J. Probab. 13(22), 629–670 (2008)

    MathSciNet  Google Scholar 

  13. Coutand, D., Shkoller, S.: Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal. 176(1), 25–102 (2005)

    MathSciNet  Google Scholar 

  14. Coutand, D., Shkoller, S.: The interaction between quasilinear elastodynamics and the Navier–Stokes equations. Arch. Ration. Mech. Anal. 179(3), 303–352 (2006)

    MathSciNet  Google Scholar 

  15. Dalang, R.C.: Extending martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E.’s. Electron. J. Probab. 4(6), 1–29 (1999)

    MathSciNet  Google Scholar 

  16. Dalang, R.C.: The stochastic wave equation. In: Khoshnevisan, D., Rassoul-Agha, F. (eds.) A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, vol. 1962. Springer, Berlin (2009)

    Google Scholar 

  17. Dalang, R.C., Frangos, N.E.: The stochastic wave equation in two spatial dimensions. Ann. Probab. 26(1), 187–212 (1998)

    MathSciNet  Google Scholar 

  18. Dalang, R.C., Sanz-Solé, M.: Hölder–Sobolev regularity of the solution to the stochastic wave equation in dimension 3. Mem. Amer. Math. Soc., 199(931):vi+70 (2009)

  19. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions, volume 152 of Encyclopedia of Mathematics and Its Applications, 2nd edn. Cambridge University Press, Cambridge (2014)

  20. Du, Q., Gunzburger, M.D., Hou, L.S., Lee, J.: Analysis of a linear fluid–structure interaction problem. Discrete Contin. Dyn. Syst. 9(3), 633–650 (2003)

    MathSciNet  Google Scholar 

  21. Evans, L.C.: Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2010)

  22. Evans, L.C.: An Introduction to Stochastic Differential Equations, vol. 82. American Mathematical Society, Providence (2013)

    Google Scholar 

  23. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102, 367–391 (1995)

    MathSciNet  Google Scholar 

  24. Friedrich, B.M., Jülicher, F.: The stochastic dance of circling sperm cells: sperm chemotaxis in the plane. New J. Phys. 10, 123025 (2008)

    ADS  Google Scholar 

  25. Grandmont, C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40(2), 716–737 (2008)

    MathSciNet  Google Scholar 

  26. Grandmont, C., Hillairet, M.: Existence of global strong solutions to a beam-fluid interaction system. Arch. Ration. Mech. Anal. 220(3), 1283–1333 (2016)

    MathSciNet  Google Scholar 

  27. Grandmont, C., Lukáčová-Medvid’ová, M., Nečasová, Š.: Mathematical and numerical analysis of some FSI problems. In: Bodnár, T., Galdi, G.P., Nečasová, Š. (eds.) Fluid–Structure Interaction and Biomedical Applications, Advances in Mathematical Fluid Mechanics, pp. 1–77. Birkhäuser (2014)

  28. Guidoboni, G., Glowinski, R., Cavallini, N., Čanić, S.: Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow. J. Comput. Phys. 228(18), 6916–6937 (2009)

    ADS  MathSciNet  CAS  Google Scholar 

  29. Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105(2), 143–158 (1996)

    Google Scholar 

  30. Gyöngy, I., Krylov, N.: On the splitting-up method and stochastic partial differential equations. Ann. Probab. 31(2), 564–591 (2003)

    MathSciNet  Google Scholar 

  31. Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: On well-posedness for a free boundary fluid-structure model. J. Math. Phys. 53(11):115624, 13 (2012)

  32. Ignatova, M., Kukavica, I., Lasiecka, I., Tuffaha, A.: On well-posedness and small data global existence for an interface damped free boundary fluid–structure model. Nonlinearity 27(3), 467–499 (2014)

    ADS  MathSciNet  Google Scholar 

  33. Karczewska, A., Zabczyk, J.: Stochastic PDEs with function-valued solutions. In: Clément, Ph., den Hollander, F., van Neerven, J., de Pagter, B. (eds.) Infinite Dimensional Stochastic Analysis, Proceedings of the Colloquium of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, pp. 197–216 (1999)

  34. Korn, A.: Solution générale du problème d’équilibre dans la théorie de l’élasticité, dans le cas òu les effets sont donnés à la surface. Ann. Fac. Sci. Toulouse Math. 10, 165–269 (1908)

    Google Scholar 

  35. Kuan, J., Čanić, S.: A stochastically perturbed fluid-structure interaction problem modeled by a stochastic viscous wave equation. J. Differ. Equ. 310, 45–98 (2022)

    ADS  MathSciNet  Google Scholar 

  36. Kuan, J., Čanić, S.: Well-posedness of a linearly coupled stochastic fluid-structure interaction system with nonlinear random forcing, In Preparation

  37. Kukavica, I., Tuffaha, A.: Solutions to a fluid-structure interaction free boundary problem. DCDS-A 32(4), 1355–1389 (2012)

    MathSciNet  Google Scholar 

  38. Kukavica, I., Tuffaha, A., Ziane, M.: Strong solutions for a fluid structure interaction system. Adv. Differ. Equ. 15(3–4), 231–254 (2010)

    MathSciNet  Google Scholar 

  39. Kukavica, I., Xu, F., Ziane, M.: Global existence for the stochastic Navier–Stokes equations with small \({L}^p\) data. Stochast. Partial Differ. Equ. Anal. Comput. 10, 160–189 (2022)

    Google Scholar 

  40. Lengeler, D., Růžička, M.: Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell. Arch. Ration. Mech. Anal. 211(1), 205–255 (2014)

    MathSciNet  Google Scholar 

  41. Lequeurre, J.: Existence of strong solutions to a fluid–structure system. SIAM J. Math. Anal. 43(1), 389–410 (2011)

    MathSciNet  Google Scholar 

  42. Link, J., Nguyen, P., Temam, R.: Local martingale solutions to the stochastic one layer shallow water equations. J. Math. Anal. Appl. 448(1), 93–139 (2017)

    MathSciNet  Google Scholar 

  43. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires, vol. 31. Dunod, Paris (1969)

    Google Scholar 

  44. Muha, B., Čanić, S.: Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal. 207(3), 919–968 (2013)

    MathSciNet  Google Scholar 

  45. Muha, B., Čanić, S.: A nonlinear, 3D fluid-structure interaction problem driven by the time-dependent dynamic pressure data: a constructive existence proof. Commun. Inf. Syst. 13(3), 357–397 (2013)

    MathSciNet  Google Scholar 

  46. Muha, B., Čanić, S.: Existence of a solution to a fluid-multi-layered-structure interaction problem. J. Differ. Equ. 256(2), 658–706 (2014)

    MathSciNet  Google Scholar 

  47. Muha, B., Čanić, S.: Fluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy. Interfaces Free Bound. 17(4), 465–495 (2015)

    MathSciNet  Google Scholar 

  48. Muha, B., Čanić, S.: Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition. J. Differ. Equ. 260(12), 8550–8589 (2016)

    ADS  MathSciNet  Google Scholar 

  49. Muha, B., Čanić, S.: A generalization of the Aubin–Lions–Simon compactness lemma for problems on moving domains. J. Differ. Equ. 266(12), 8370–8418 (2019)

    ADS  MathSciNet  Google Scholar 

  50. Musielak, J., Orlicz, W.: On generalized variations (I). Studia Math. 18(1), 11–41 (1959)

    MathSciNet  Google Scholar 

  51. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, Berlin (2013)

    Google Scholar 

  52. Qu, Z., Hu, G., Garfinkel, A., Weiss, J.N.: Nonlinear and stochastic dynamics in the heart. Phys. Rep. 543(2), 61–162 (2014)

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  53. Raymond, J.-P., Vanninathan, M.: A fluid-structure model coupling the Navier–Stokes equations and the Lamé system. J. Math. Pures Appl. (9) 102(3), 546–596 (2014)

    MathSciNet  Google Scholar 

  54. Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations, volume 13 of Texts in Applied Mathematics, 2nd edn. Springer, New York (2004)

  55. Revuz, D., Yor, M.: Continuous martingales and Brownian motion, volume 293 of A Series of Comprehensive Studies in Mathematics, 3rd edn. Springer, Berlin (1999)

  56. Simon, J.: Compact sets in the space \({L}^{p}(0, {T}; {B})\). Ann. Mat. Pura Appl. 146, 65–96 (1986)

    ADS  Google Scholar 

  57. Tawri, K., vCanić, S.: Existence of martingale solutions to a nonlinearly coupled stochastic fluid-structure interaction problem, In preparation

  58. Young, L.C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67, 251–282 (1936)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation under Grants DMS-1853340 and DMS-2011319. We would also like to thank the anonymous reviewer whose careful reading of our manuscript and whose insightful remarks significantly improved the quality of the resulting paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunčica Čanić.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by C. Grandmont.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: An Alternative Approach to the Existence Proof

Appendix: An Alternative Approach to the Existence Proof

In this appendix, we make some additional comments about an alternative approach to passing to the limit in the random approximate solutions constructed in Sect. 7. We would like to thank the anonymous reviewer, whose read the manuscript carefully and provided helpful suggestions which inspired the observations stated in this appendix. In particular, in the exposition presented in the current manuscript, we used compactness arguments based on showing tightness of the laws of the random approximate solutions, and stochastic PDE techniques involving the Skorohod representation theorem and the Gyöngy–Krylov lemma to pass to the limit. As emphasized throughout the manuscript, the rationale for using these compactness arguments, even in the case of a fully linear stochastic system of PDEs, was to develop a robust framework that is applicable to a wide variety of stochastic systems of PDEs. In particular, the compactness argument framework presented in this manuscript extends to the case of linearly coupled FSI with nonlinear dependence of the intensity of the random noise [36], and nonlinearly coupled stochastic FSI in which the fluid equations are posed on a time-dependent (random) moving fluid domain which is determined by the displacement of a stochastically forced elastic membrane [57].

However, we note that in the case of a genuinely fully linear stochastic system of PDEs as in the case of the current manuscript, having uniform boundedness of the random approximate solutions, even just in expectation, is sufficient to pass to the limit in the semidiscrete weak formulation, in order to obtain existence of a probabilistically strong solution directly on the original probability space, hence bypassing the need to use the Skorohod representation theorem and eliminating the need to transfer the problem to a different probability space. We illustrate this procedure below, starting from the uniform boundedness of the approximate solutions generated by the splitting scheme, stated in Proposition 7.2 and Proposition 7.3, where these approximate solutions satisfy the semidiscrete formulation (25). Though this procedure using weak convergence of the random approximate solutions in function spaces involving both the probability space and the spacetime function spaces works well for the case of this fully linear stochastic system, we emphasize that this approach does not generalize to more complex stochastic systems involving nonlinearities, which require compactness arguments of the type presented in this manuscript.

We start with the uniform boundedness result stated in Proposition 7.2 and Proposition 7.3, and we conclude that there exist limiting random variables \(\eta \), v, and \(\varvec{u}\) such that

  • \(\eta _{N}\) converges weakly star to \(\eta \) in \(L^{2}(\Omega ; L^{\infty }(0, T; H_{0}^{1}(\Gamma )))\).

  • \({\overline{\eta }}_{N}\) converges weakly star to \(\eta \) in \(L^{2}(\Omega ; W^{1, \infty }(0, T; L^{2}(\Gamma )))\).

  • \(v_{N}\) converges weakly star to v in \(L^{2}(\Omega ; L^{\infty }(0, T; L^{2}(\Gamma )))\).

  • \(v_{N}^{\Delta t}\) converge weakly to v in \(L^{2}(\Omega ; L^{2}(0, T; H^{1/2}(\Gamma )))\).

  • \(v_{N}^{*}\) converges weakly star to v in \(L^{2}(\Omega ; L^{\infty }(0, T; L^{2}(\Gamma )))\).

  • \(\varvec{u}_{N}\) converges weakly star to \(\varvec{u}\) in \(L^{2}(\Omega ; L^{\infty }(0, T; L^{2}(\Omega _{f})))\).

  • \(\varvec{u}_{N}^{\Delta t}\) converges weakly to \(\varvec{u}\) in \(L^{2}(\Omega ; L^{2}(0, T; H^{1}(\Omega _{f})))\).

In addition, by combining the uniform numerical dissipation estimates stated in Proposition 6.7 with the convergences stated above, we conclude that

  • \(\overline{\varvec{u}}_{N}\) converges to \(\varvec{u}\) weakly in \(L^{2}(\Omega ; L^{2}(0, T; L^{2}(\Omega _{f})))\).

  • \({\overline{v}}_{N}\) converges to v weakly in \(L^{2}(\Omega ; L^{2}(0, T; L^{2}(\Gamma )))\).

We recall that the (random) approximate solutions satisfy the semidiscrete formulation (25) almost surely for each (deterministic) test function \((\varvec{q}, \psi ) \in {\mathcal {Q}}(0, T)\):

$$\begin{aligned}{} & {} \int _{\Omega _{f}} \frac{\varvec{u}^{n + 1}_{N} - \varvec{u}^{n}_{N}}{\Delta t} \cdot \varvec{q} d\varvec{x} + 2\mu \int _{\Omega _{f}} \varvec{D}(\varvec{u}^{n + 1}_{N}): \varvec{D}(\varvec{q}) d\varvec{x} + \int _{\Gamma } \frac{v^{n + 1}_{N} - v^{n}_{N}}{\Delta t} \psi dz + \int _{\Gamma } \nabla \eta ^{n + 1}_{N} \cdot \nabla \psi dz \\{} & {} \quad = \int _{\Gamma } \frac{W((n + 1)\Delta t) - W(n\Delta t)}{\Delta t} \psi dz + P^{n}_{N, in}\int _{0}^{R} (q_{z})|_{z = 0} dr - P^{n}_{N, out} \int _{0}^{R} (q_{z})|_{z = L} dr. \end{aligned}$$

We want to show that the limiting functions \((\eta , v, \varvec{u})\) satisfy the continuous weak formulation almost surely for each \((\varvec{q}, \psi ) \in {\mathcal {Q}}(0, T)\):

$$\begin{aligned}{} & {} - \int _{0}^{T} \int _{\Omega _{f}} \varvec{u} \cdot \partial _{t}\varvec{q} d\varvec{x} dt + 2\mu \int _{0}^{T} \int _{\Omega _{f}} \varvec{D}(\varvec{u}): \varvec{D}(\varvec{q}) d\varvec{x} dt - \int _{0}^{T} \int _{\Gamma } v\partial _{t}\psi dz dt + \int _{0}^{T} \int _{\Gamma } \nabla \eta \cdot \nabla \psi dz dt \\{} & {} \quad = \int _{0}^{T} P_{in}(t) \left( \int _{\Gamma _{in}} q_{z} dr\right) dt - \int _{0}^{T} P_{out}(t) \left( \int _{\Gamma _{out}} q_{z} dr\right) dt + \int _{\Omega _{f}} \varvec{u_{0}} \cdot \varvec{q}(0) d\varvec{x} \\{} & {} \qquad + \int _{\Gamma } v_{0}\psi (0) dz + \int _{0}^{T}\left( \int _{\Gamma } \psi dz\right) dW(t). \end{aligned}$$

We emphasize that the convergence of the approximate solutions to the limiting functions \((\eta , v, \varvec{u})\) is only convergence weakly and weakly star in function spaces involving the probability space itself since the uniform boundedness of the approximate solutions is only in expectation.

We consider a fixed but arbitrary deterministic test function \((\varvec{q}, \psi ) \in {\mathcal {Q}}(0, T)\) where the test space \({\mathcal {Q}}(0, T)\) is defined in (13), and we associate to this test function the following random variable (defined with the limiting weak formulation in consideration):

$$\begin{aligned}{} & {} X_{(\varvec{q}, \psi )}:= - \int _{0}^{T} \int _{\Omega _{f}} \varvec{u} \cdot \partial _{t}\varvec{q} d\varvec{x} dt + 2\mu \int _{0}^{T} \int _{\Omega _{f}} \varvec{D}(\varvec{u}): \varvec{D}(\varvec{q}) d\varvec{x} dt - \int _{0}^{T} \int _{\Gamma } v\partial _{t}\psi dz dt + \int _{0}^{T} \int _{\Gamma } \nabla \eta \cdot \nabla \psi dz dt \nonumber \\{} & {} \quad - \int _{0}^{T} P_{in}(t) \left( \int _{\Gamma _{in}} q_{z} dr\right) dt + \int _{0}^{T} P_{out}(t) \left( \int _{\Gamma _{out}} q_{z} dr\right) dt - \int _{\Omega _{f}} \varvec{u_{0}} \cdot \varvec{q}(0) d\varvec{x} \nonumber \\{} & {} \quad - \int _{\Gamma } v_{0}\psi (0) dz - \int _{0}^{T}\left( \int _{\Gamma } \psi dz\right) dW(t). \end{aligned}$$
(83)

Because of the function spaces that the limiting solution \((\eta , v, \varvec{u})\) belong to and the regularity of the test functions in the test space \({\mathcal {Q}}(0, T)\) which is defined in (13), we conclude that \(X_{(\varvec{q}, \psi )} \in L^{2}(\Omega )\) is a square integrable real-valued random variable that is hence finite almost surely.

Because the semidiscrete weak formulation holds pathwise as a result of how the splitting scheme constructs the approximate solutions pathwise outcome by outcome in the probability space, we more generally have that the approximate solutions satisfy the following generalized semidiscrete formulation almost surely

$$\begin{aligned}{} & {} \int _{\Omega _{f}} \frac{\varvec{u}^{n + 1}_{N} - \varvec{u}^{n}_{N}}{\Delta t} \cdot \left( X_{(\varvec{q}, \psi )} \varvec{q}\right) d\varvec{x} + 2\mu \int _{\Omega _{f}} \varvec{D}(\varvec{u}^{n + 1}_{N}): \varvec{D}\left( X_{(\varvec{q}, \psi )} \varvec{q}\right) d\varvec{x} \nonumber \\{} & {} \quad + \int _{\Gamma } \frac{v^{n + 1}_{N} - v^{n}_{N}}{\Delta t} \left( X_{(\varvec{q}, \psi )} \psi \right) dz + \int _{\Gamma } \nabla \eta ^{n + 1}_{N} \cdot \nabla \left( X_{(\varvec{q}, \psi )} \psi \right) dz \nonumber \\{} & {} \quad - \int _{\Gamma } \frac{W((n + 1)\Delta t) - W(n\Delta t)}{\Delta t} \left( X_{(\varvec{q}, \psi )} \psi \right) dz \nonumber \\{} & {} \quad - P^{n}_{N, in}\int _{0}^{R} \left( X_{(\varvec{q}, \psi )} q_{z}\right) |_{z = 0} dr + P^{n}_{N, out} \int _{0}^{R} \left( X_{(\varvec{q}, \psi )} q_{z}\right) |_{z = L} dr = 0, \end{aligned}$$
(84)

so that the test function \(\left( X_{(\varvec{q}, \psi )} q, X_{(\varvec{q}, \psi )} \psi \right) \) in the semidiscrete weak formulation is now a random test function. Because all of the weak and weak star convergences that we have involve the probability space and hence involve convergence of quantities in expectation, we integrate from \(n\Delta t\) to \((n + 1)\Delta t\) in time, sum from \(n = 0\) to \(n = N - 1\), and take the expectation of both sides of (84), and then pass to the limit as \(N \rightarrow \infty \). We hence want to pass to the limit as \(N \rightarrow \infty \) in the left hand side of the expression:

$$\begin{aligned}{} & {} \mathbb {E} \sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} \Bigg [\int _{\Omega _{f}} \frac{\varvec{u}^{n + 1}_{N} - \varvec{u}^{n}_{N}}{\Delta t} \cdot \left( X_{(\varvec{q}, \psi )} \varvec{q}\right) d\varvec{x} + 2\mu \int _{\Omega _{f}} \varvec{D}(\varvec{u}^{n + 1}_{N}): \varvec{D}\left( X_{(\varvec{q}, \psi )} \varvec{q}\right) d\varvec{x} \nonumber \\{} & {} \quad + \int _{\Gamma } \frac{v^{n + 1}_{N} - v^{n}_{N}}{\Delta t} \left( X_{(\varvec{q}, \psi )} \psi \right) dz + \int _{\Gamma } \nabla \eta ^{n + 1}_{N} \cdot \nabla \left( X_{(\varvec{q}, \psi )} \psi \right) dz - \int _{\Gamma } \frac{W((n + 1)\Delta t) - W(n\Delta t)}{\Delta t} \left( X_{(\varvec{q}, \psi )} \psi \right) dz \nonumber \\{} & {} \quad - P^{n}_{N, in}\int _{0}^{R} \left( X_{(\varvec{q}, \psi )} q_{z}\right) |_{z = 0} dr + P^{n}_{N, out} \int _{0}^{R} \left( X_{(\varvec{q}, \psi )} q_{z}\right) |_{z = L} dr\Bigg ] dt = 0, \end{aligned}$$
(85)

To handle the first term, we use an integration by parts in time as in (56) and the fact that \(\varvec{q}\) is compactly supported in [0, T) to obtain:

$$\begin{aligned}{} & {} \mathbb {E} \sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} \int _{\Omega _{f}} \frac{\varvec{u}^{n + 1}_{N} - \varvec{u}^{n}_{N}}{\Delta t} \cdot \left( X_{(\varvec{q}, \psi )} \varvec{q}\right) d\varvec{x} dt = \mathbb {E} \int _{0}^{T} \int _{\Omega _{f}} \partial _{t}\overline{\varvec{u}}_{N} \cdot \left( X_{(\varvec{q}, \psi )} \varvec{q}\right) d\varvec{x} dt \nonumber \\{} & {} \quad = -\mathbb {E} \int _{0}^{T} \int _{\Omega _{f}} \overline{\varvec{u}}_{N} \cdot \left( X_{(\varvec{q}, \psi )} \partial _{t} \varvec{q}\right) d\varvec{x} dt - \mathbb {E} \int _{\Omega _{f}} \varvec{u}_{0} \cdot \left( X_{(\varvec{q}, \psi )} \varvec{q}(0)\right) \nonumber \\{} & {} \quad \rightarrow -\mathbb {E} \int _{0}^{T} \int _{\Omega _{f}} \varvec{u} \cdot \left( X_{(\varvec{q}, \psi )} \partial _{t}\varvec{q}\right) d\varvec{x} dt - \mathbb {E} \int _{\Omega _{f}} \varvec{u}_{0} \cdot \left( X_{(\varvec{q}, \psi )} \varvec{q}(0)\right) , \end{aligned}$$
(86)

by the convergence of \(\overline{\varvec{u}}_{N}\) to \(\varvec{u}\) weakly in \(L^{2}(\Omega ; L^{2}(0, T; L^{2}(\Omega _{f})))\). Similarly, we have by the weak convergence of \(v_{N}\) to v in \(L^{2}(\Omega ; L^{2}(0, T; L^{2}(\Gamma )))\) that

$$\begin{aligned} \mathbb {E} \sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} \int _{\Gamma } \frac{v^{n + 1}_{N} - v^{n}_{N}}{\Delta t} \left( X_{(\varvec{q}, \psi )} \psi \right) dz dt \rightarrow -\mathbb {E} \int _{0}^{T} \int _{\Gamma } v\left( X_{(\varvec{q}, \psi )} \partial _{t}\psi \right) dz dt - \mathbb {E} \int _{\Omega _{f}} v_{0} \left( X_{(\varvec{q}, \psi )} \psi (0)\right) .\nonumber \\ \end{aligned}$$
(87)

By the weak convergence of \(\varvec{u}^{\Delta t}_{N}\) to \(\varvec{u}\) in \(L^{2}(\Omega ; L^{2}(0, T; H^{1}(\Omega _{f})))\), we obtain that

$$\begin{aligned} \mathbb {E} \sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} 2\mu \int _{\Omega _{f}} \varvec{D}(\varvec{u}^{n + 1}_{N}) : \varvec{D}\left( X_{(\varvec{q}, \psi )} \varvec{q}\right) d\varvec{x} dt&= \mathbb {E} \left( 2\mu \int _{0}^{T} \int _{\Omega _{f}} \varvec{D}\left( \varvec{u}^{\Delta t}_{N}\right) : \varvec{D}\left( X_{(\varvec{q}, \psi )} \varvec{q}\right) d\varvec{x} dt\right) \nonumber \\&\rightarrow \mathbb {E}\left( 2\mu \int _{0}^{T} \int _{\Omega _{f}} \varvec{D}\left( \varvec{u}\right) : \varvec{D}\left( X_{(\varvec{q}, \psi )} \varvec{q}\right) d\varvec{x} dt\right) . \end{aligned}$$
(88)

Similarly, by the weak convergence of \(\eta ^{\Delta t}_{N}\) to \(\eta \) in \(L^{2}(\Omega ; L^{2}(0, T; H_{0}^{1}(\Gamma )))\) which follows from the uniform numerical dissipation estimates in Proposition 6.7, where \(\eta ^{\Delta t}_{N}\) is defined in (30), we obtain that

$$\begin{aligned} \mathbb {E}\sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} \int _{\Gamma } \nabla \eta ^{n + 1}_{N} \cdot \nabla \left( X_{(\varvec{q}, \psi )} \psi \right) dz dt \rightarrow \mathbb {E}\left( \int _{0}^{T} \int _{\Gamma } \nabla \eta \cdot \nabla \left( X_{(\varvec{q}, \psi )} \psi \right) dz dt\right) . \end{aligned}$$
(89)

For the stochastic integral, we claim that

$$\begin{aligned}{} & {} \mathbb {E} \sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} \int _{\Gamma } \frac{W((n + 1)\Delta t) - W(n\Delta t)}{\Delta t} \left( X_{(\varvec{q}, \psi )} \psi \right) dz dt \nonumber \\{} & {} \quad = \mathbb {E} \left( X_{(\varvec{q}, \psi )} \sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} \int _{\Gamma } \frac{W((n + 1)\Delta t) - W(n\Delta t)}{\Delta t} \psi dz dt\right) \rightarrow \mathbb {E} \left( X_{(\varvec{q}, \psi )} \int _{0}^{T} \int _{\Gamma } \psi (t, z) dz dW(t)\right) .\nonumber \\ \end{aligned}$$
(90)

In order to show this, we first observe that

$$\begin{aligned}{} & {} \mathbb {E} \sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} \int _{\Gamma } \frac{W((n + 1)\Delta t) - W(n\Delta t)}{\Delta t} \psi dz dt \nonumber \\{} & {} \quad = \mathbb {E} \left( \int _{0}^{T} \sum _{n = 0}^{N - 1} \left( \frac{1}{\Delta t}\int _{n\Delta t}^{(n + 1)\Delta t} \int _{\Gamma } \psi (s, z) dz ds \right) 1_{[n\Delta t, (n + 1)\Delta t)}(t) dW(t)\right) , \end{aligned}$$
(91)

and note that we have the following deterministic convergence:

$$\begin{aligned} \int _{0}^{T} \left( \int _{\Gamma } \psi (t, z) dz - \frac{1}{\Delta t} \sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} \int _{\Gamma } \psi (s, z) dz ds 1_{[n\Delta t, (n + 1)\Delta t)}(t)\right) ^{2} dt \rightarrow 0, \qquad \text { as } N \rightarrow \infty ,\nonumber \\ \end{aligned}$$
(92)

by the fact that the function \(\displaystyle \int _{\Gamma } \psi (t, z) dz\) is a uniformly continuous real-valued (deterministic) function on [0, T]. Hence, by Itô’s isometry and (91),

$$\begin{aligned} \mathbb {E}\sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} \int _{\Gamma } \frac{W((n + 1)\Delta t) - W(n\Delta t)}{\Delta t} \psi dz dt \rightarrow \mathbb {E} \left( \int _{0}^{T} \int _{\Gamma } \psi (t, z) dz dW(t)\right) . \end{aligned}$$
(93)

Then, because \(X_{(\varvec{q}, \psi )} \in L^{2}(\Omega )\) and in addition,

$$\begin{aligned} \sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} \int _{\Gamma } \frac{W((n + 1)\Delta t) - W(n\Delta t)}{\Delta t}\psi dz dt, \quad \int _{0}^{T} \int _{\Gamma } \psi (t, z) dz dW(t) \in L^{2}(\Omega ), \end{aligned}$$

we conclude the desired convergence (90) by using (93) and the Cauchy-Schwarz inequality with \(L^{2}(\Omega )\).

Finally, for the pressure term, we use the deterministic convergence (75) to conclude that

$$\begin{aligned}{} & {} \mathbb {E}\sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} \left( P^{n}_{N, in/out} \int _{0}^{R} \left( X_{(\varvec{q}, \psi )} q_{z}\right) |_{z = 0} dr\right) \nonumber \\{} & {} \quad = \left( \sum _{n = 0}^{N - 1} \int _{n\Delta t}^{(n + 1)\Delta t} P^{n}_{N, in/out} \int _{0}^{R} (q_{z})|_{z = 0} dr dt\right) \mathbb {E}\left( X_{(\varvec{q}, \psi )}\right) \nonumber \\{} & {} \quad \rightarrow \left( \int _{0}^{T} P_{in/out}(t) \int _{0}^{R} (q_{z})|_{z = 0} dr dt\right) \mathbb {E}\left( X_{(\varvec{q}, \psi )}\right) . \end{aligned}$$
(94)

Combining the convergences (86), (87), (88), (89), (90), and (94) and applying these convergences to take the limit in (85) as \(N \rightarrow \infty \), we obtain that

$$\begin{aligned} \mathbb {E}\left( \left| X_{(\varvec{q}, \psi )}\right| ^{2}\right) = 0, \end{aligned}$$

since we can take the real-valued random variable \(X_{(\varvec{q}, \psi )}\) out of any integrals involving space or time as a multiplicative constant. Hence, \(X_{(\varvec{q}, \psi )} = 0\) almost surely for every fixed but arbitrary deterministic test function \((\varvec{q}, \psi ) \in {\mathcal {Q}}(0, T)\), which shows that the limiting functions \((\eta , v, \varvec{u})\) satisfy the continuous in time weak formulation. This is a result of the fact that \(X_{(\varvec{q}, \psi )} = 0\) almost surely, and the definition of the real-valued random variable \(X_{(\varvec{q}, \psi )}\) in (83).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuan, J., Čanić, S. Well-Posedness of Solutions to Stochastic Fluid–Structure Interaction. J. Math. Fluid Mech. 26, 4 (2024). https://doi.org/10.1007/s00021-023-00839-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00839-y

Navigation