Skip to main content
Log in

The Lagrangian Formulation for Wave Motion with a Shear Current and Surface Tension

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The Lagrangian formulation for the irrotational wave motion is straightforward and follows from a Lagrangian functional which is the difference between the kinetic and the potential energy of the system. In the case of fluid with constant vorticity, which arises for example when a shear current is present, the separation of the energy into kinetic and potential is not at all obvious and neither is the Lagrangian formulation of the problem. Nevertheless, we use the known Hamiltonian formulation of the problem in this case to obtain the Lagrangian density function, and utilising the Euler–Lagrange equations we proceed to derive some model equations for different propagation regimes. While the long-wave regime reproduces the well known KdV equation, the short- and intermediate long wave regimes lead to highly nonlinear and nonlocal evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Benjamin, T.B., Olver, P.J.: Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137–85 (1982). https://doi.org/10.1017/S0022112082003292

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Broer, L.J.F.: On the Hamiltonian theory of surface waves. Appl. Sci. Res. 30, 430–446 (1974). https://doi.org/10.1007/BF00384164

    Article  ADS  MATH  Google Scholar 

  3. Byatt-Smith, J.: An integral equation for unsteady surface waves and a comment on the Boussinesq equation. J. Fluid Mech. 49(4), 625–633 (1971). https://doi.org/10.1017/S0022112071002295

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Case, K.M., Chiu, S.C.: Three-wave resonant interactions of gravity-capillary waves. Phys. Fluids 20, 742–745 (1977). https://doi.org/10.1063/1.861945

    Article  ADS  MATH  Google Scholar 

  5. Clamond, D., Dutykh, D.: Accurate fast computation of steady two-dimensional surface gravity waves in arbitrary depth. J. Fluid Mech. 844, 491–518 (2018). https://doi.org/10.1017/jfm.2018.208

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Compelli, A., Ivanov, R.: The dynamics of flat surface internal geophysical waves with currents. J. Math. Fluid Mech. 19(2), 329–344 (2017). https://doi.org/10.1007/s00021-016-0283-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Compelli, A.C., Ivanov, R.I., Martin, C.I., Todorov, M.D.: Surface waves over currents and uneven bottom. Deep Sea Res. Part II 160, 25–31 (2019). https://doi.org/10.1016/j.dsr2.2018.11.004

    Article  Google Scholar 

  8. Constantin, A., Ivanov, R.I., Martin, C.I.: Hamiltonian formulation for wave–current interactions in stratified rotational flows. Arch. Ration. Mech. Anal. 221, 1417–1447 (2016). https://doi.org/10.1007/s00205-016-0990-2 (open access)

  9. Constantin, A., Ivanov, R., Prodanov, E.: Nearly-Hamiltonian structure for water waves with constant vorticity. J. Math. Fluid Mech. 10(2), 224–237 (2008). https://doi.org/10.1007/s00021-006-0230-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Constantin, A., Kartashova, E.: Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves. Europhys. Lett. 86, 29001 (2009). https://doi.org/10.1209/0295-5075/86/29001

    Article  ADS  Google Scholar 

  11. Craig, W., Groves, M.: Hamiltonian long-wave approximations to the water-wave problem. Wave Motion 19, 367–389 (1994). https://doi.org/10.1016/0165-2125(94)90003-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Craig, W., Guyenne, P., Kalisch, H.: Hamiltonian long wave expansions for free surfaces and interfaces. Commun. Pure Appl. Math. 58(12), 1587–1641 (2005). https://doi.org/10.1002/cpa.20098

    Article  MathSciNet  MATH  Google Scholar 

  13. Craig, W., Sulem, C.: Numerical simulation of gravity waves. J. Comput. Phys. 108, 73–83 (1993). https://doi.org/10.1006/jcph.1993.1164

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Craik, A.D.D.: Wave Interactions and Fluid Flows. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, London (1985)

    Google Scholar 

  15. Cullen, J., Ivanov, R.: On the intermediate long wave propagation for internal waves in the presence of currents. Eur. J. Mech. B Fluids 84, 325–333 (2020). https://doi.org/10.1016/j.euromechflu.2020.07.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Iooss, G., Kirrmann, P.: Capillary gravity waves on the free surface of an inviscid fluid of infinite depth. Existence of solitary waves. Arch. Ration. Mech. Anal. 136, 1–19 (1996). https://doi.org/10.1007/BF02199364

    Article  MathSciNet  MATH  Google Scholar 

  17. Ivanov, R.I.: On the modelling of short and intermediate water waves. Appl. Math. Lett. 142, 108653 (2023). https://doi.org/10.1016/j.aml.2023.108653

    Article  MathSciNet  MATH  Google Scholar 

  18. Ivanov, R.I., Martin, C.I.: On the time-evolution of resonant triads in rotational capillary-gravity water waves. Phys. Fluids 31, 117103 (2019). https://doi.org/10.1063/1.5128294

    Article  ADS  Google Scholar 

  19. Kartashova, E.: Nonlinear resonances of water waves. Discrete Contin. Dyn. Syst. B 12, 607–621 (2009). https://doi.org/10.3934/dcdsb.2009.12.607

    Article  MathSciNet  MATH  Google Scholar 

  20. Korteweg, D.J., De Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(240), 422–443 (1895). https://doi.org/10.1080/14786449508620739

    Article  MathSciNet  MATH  Google Scholar 

  21. Lannes, D.: The Water Waves Problem: Mathematical Analysis and Asymptotics (Mathematical Surveys and Monographs). American Mathematical Society, Providence (2013)

    Book  MATH  Google Scholar 

  22. Longuet-Higgins, M.: Capillary-gravity waves of solitary type on deep water. J. Fluid Mech. 200, 451–470 (1989). https://doi.org/10.1017/S002211208900073X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Martin, C.I.: Resonant interactions of capillary-gravity water waves. J. Math. Fluid Mech. 19, 807–817 (2017). https://doi.org/10.1007/s00021-016-0306-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Matsuno, Y.: Nonlinear evolutions of surface gravity waves on fluid of finite depth. Phys. Rev. Lett. 69, 609–611 (1992). https://doi.org/10.1103/PhysRevLett.69.609

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. McGoldrick, L.F.: Resonant interactions among capillary-gravity waves. J. Fluid Mech. 21, 305–331 (1965). https://doi.org/10.1017/S0022112065000198

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Miles, J.W.: On Hamilton’s principle for surface waves. J. Fluid Mech. 83, 153–158 (1977). https://doi.org/10.1017/S0022112077001104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Miles, J.W.: Hamiltonian formulations for surface waves. Appl. Sci. Res. 37, 103–110 (1981). https://doi.org/10.1007/BF00382621

    Article  MathSciNet  MATH  Google Scholar 

  28. Novikov, S.P., Manakov, S.V., Pitaevsky, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Plenum, New York (1984)

    Google Scholar 

  29. Phillips, O.M.: On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions. J. Fluid Mech. 9, 193–217 (1960). https://doi.org/10.1017/S0022112060001043

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Radder, A.C.: An explicit Hamiltonian formulation of surface waves in water of finite depth. J. Fluid Mech. 237, 435–455 (1992). https://doi.org/10.1017/S0022112092003483

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Santini, P.M.: Integrable Singular Integral Evolution Equations. In: Fokas, A., Zakharov, V. (eds.) Important Developments in Soliton Theory, pp. 147–177. Springer, Berlin (1993)

    Chapter  Google Scholar 

  32. Stuhlmeier, R., Vrecica, T., Toledo, Y.: Nonlinear wave interaction in coastal and open seas: deterministic and stochastic theory. In: Henry, D., et al. (eds.) Nonlinear Water Waves—An Interdisciplinary Interface, pp. 151–181. Springer, Cham (2019)

    Chapter  MATH  Google Scholar 

  33. Vanden-Broeck, J., Dias, F.: Gravity-capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech. 240, 549–557 (1992). https://doi.org/10.1017/S0022112092000193

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Wahlén, E.: A Hamiltonian formulation of water waves with constant vorticity. Lett. Math. Phys. 79, 303–315 (2007). https://doi.org/10.1007/s11005-007-0143-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Tekh. Fiz. 9 (1968) 86–94 (in Russian); J. Appl. Mech. Tech. Phys. 9 (1968) 190–194 (English translation). https://doi.org/10.1007/BF00913182

Download references

Acknowledgements

The authors are thankful to two anonymous referees for their corrections and constructive suggestions, which have improved the quality of the manuscript. This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant No. 21/FFP-A/9150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossen Ivanov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data availability

The reported results are of purely theoretical nature and no data has been used supporting these results.

Additional information

Communicated by A. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curtin, C., Ivanov, R. The Lagrangian Formulation for Wave Motion with a Shear Current and Surface Tension. J. Math. Fluid Mech. 25, 87 (2023). https://doi.org/10.1007/s00021-023-00831-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00831-6

Keywords

Navigation