Skip to main content
Log in

Localized Blow-Up Criterion for \( C^{ 1, \alpha } \) Solutions to the 3D Incompressible Euler Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We prove a localized Beale–Kato–Majda type blow-up criterion for the 3D incompressible Euler equations in the Hölder space setting. More specifically, let \(v\in C([0, T); C^{ 1, \alpha } (\Omega ))\cap L^\infty (0, T; L^2(\Omega ))\) be a solution to the Euler equations in a domain \(\Omega \subset {\mathbb {R}}^3\). If there exists a ball \(B\subset \Omega \) such that \( \int \limits \nolimits _{0}^T \Vert \omega (s)\Vert _{ BMO(B )} ds < +\infty , \) where \( \omega = \nabla \times v\) stands for the vorticity, then \( v\in C([0, T]; C^{ 1, \alpha } (K)) \) for every compact subset \( K \subset B \). In the proof of this result, in order to handle the time evolution of the local Hölder norm of the vorticity we use the well-known Campanato space representation for the the Hölder space, and our argument relies on the Campanato space estimates for the solution to the corresponding transport equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bahouri, H., Dehman, B.: Remarques sur l’apparition de singularités dans les écoulements Eulériens incompressibles donnée initiale Höldérienne. J. Math. Pures Appl. 73, 335–346 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Chae, D.: Nonexistence of self-similar singularities for the 3D incompressible Euler equations. Comm. Math. Phys. 273(1), 203–215 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Chae, D., Shvydkoy, R.: On formation of a locally self-similar collapse in the incompressible Euler equations. Arch. Ration. Mech. Anal. 209(3), 999–1017 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chae, D., Wolf, J.: Transport equation in generalized Campanato spaces, to appear in Revista Matemática Iberoamericana (2023)

  6. Chae, D., Wolf, J.: Localized non blow-up criterion of the Beale–Kato–Majda type for the 3D Euler equations. Math. Ann. 383(3–4), 837–865 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chae, D., Wolf, J.: The Euler equations in a critical case of the generalized Campanato space. Ann. I. H. Poincaré-AN 38, 201–241 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chae, D., Wolf, J.: Removing type II singularities off the axis for the three dimensional axisymmetric Euler equations. Arch. Ration. Mech. Anal. 234(3), 1041–1089 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, J., Hou, T.-Y.: Finite time blowup of 2D Boussinesq and 3D Euler equations with \(C^{1, \alpha }\) velocity and boundary. Comm. Math. Phys. 383(3), 1559–1667 (2021)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Chemin, J.Y.: Perfect Incompressible Fluids. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  11. Constantin, P.: On the Euler equations of incompressible fluids. Bull. Amer. Math. Soc. 44(4), 603–621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, P., Fefferman, C., Majda, A.: Geometric constraints on potential singularity formulation in the 3-D Euler equations. Comm. P.D.E. 21(3–4), 559–571 (1996)

    MATH  Google Scholar 

  13. Elgindi, T.-M.: Finite-time singularity formation for \(C^{1, \alpha }\) solutions to the incompressible Euler equations on \({{\mathbb{R} }}^3\). Ann. Math. 194(3), 647–727 (2012)

    MathSciNet  Google Scholar 

  14. Elgindi, T.-M., Ghoul, T.-E., Masmoudi, N.: On the stability of self-similar blow-up for \(C^{1, \alpha }\) solutions to the incompressible Euler equations on \({{\mathbb{R} }}^3\). Camb. J. Math. 9(4), 1035–1075 (2021)

    Article  MathSciNet  Google Scholar 

  15. Elgindi, T.M., Jeong, I.-J.: Finite-time singularity formation for strong solutions to the Boussinesq system. Ann. PDE 6(1), 5 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elgindi, T.M., Jeong, I.-J.: Finite-time singularity formation for strong solutions to the axisymmetric 3D Euler equations. Ann. PDE 5(2), 15 (2019)

    Article  MATH  Google Scholar 

  17. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. Math. Stud. No. 105, Princeton Univ. Press, Princeton (1983)

  18. Hou, T.Y., Li, R.: Nonexistence of local self-similar blow-up for the 3D incompressible Navier–Stokes equations. Discrete Contin. Dyn. Syst. 18, 637–642 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato, T.: Nonstationary flows of viscous and ideal fluids in \({{\mathbb{R} }}^3\). J. Funct. Anal. 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  20. Kozono, H., Taniuchi, Y.: Bilinear estimates in BMO and the Navier–Stokes equations. Math. Z. 235(1), 173–194 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations. Comm. Math. Phys. 214, 191–200 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Lichtenstein, L.: Über einige Existenzprobleme der Hydrodynamik homogener unzusammendrückbarer, rei bunglosser Flüssikeiten und die Helmholtzschen Wirbelsalitze. Math. Z. 23, 89–154 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luo, G., Hou, T.-Y.: Formation of finite-time singularities in the 3D axisymmetric Euler equations: a numerics guided study. SIAM Rev. 61(4), 793–835 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge Univ, Press (2002)

    MATH  Google Scholar 

  25. Tao, T.: Finite time blowup for Lagrangian modifications of the three-dimensional Euler equations. Ann. PDE 2(9), 1–79 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Chae was partially supported by NRF grants 2021R1A2C1003234, while Wolf has been supported by NRF grants 2017R1E1A1A01074536. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongho Chae.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by R. Shvydkoy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, D., Wolf, J. Localized Blow-Up Criterion for \( C^{ 1, \alpha } \) Solutions to the 3D Incompressible Euler Equations. J. Math. Fluid Mech. 25, 68 (2023). https://doi.org/10.1007/s00021-023-00813-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00813-8

Keywords

Mathematics Subject Classification

Navigation