Skip to main content
Log in

Local Existence of Solutions to the Non-Resistive 3D MHD Equations with Power-law Type

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We investigate the local-in-time existence results of solutions to non-resistive 3D MHD equations with power-law type nonlinear viscous fluid when magnetic resistance is vanished. Furthermore, if the existence of the global in time regular solution is guaranteed, the large time behavior result for solutions is obtained under the suitable assumption for the stress tensor part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

My manuscript has no associated data. ’

References

  1. Agapito, R., Schonbek, M.E.: Non-uniform decay of MHD equations with and without magnetic diffusion. Commun. Partial Differ. Equ. 32, 1791–1812 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bohme, G.: Non-Newtonian fluid mechanics, North-Holland Series in Applied Mathematics and Mechanics, (1987)

  3. Charles, F.L., Mccormick, D.S., Robinson, J.C., Rodrigo, J.L.: Higher order commutator estimates and local existence for the non-resistive MHD equations and related models. J. Funct. Anal. 267, 1035–1056 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dai, M., Liu, H.: Long time behavior of solutions to the 3D Hall-magneto-hydrodynamics system with one diffusion. J. Differ. Equ. 266(11), 7658–7677 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gunzburger, M.D., Ladyzhenskaya, O.A., Peterson, J.S.: On the global unique solvabil- ity of initial-boundary value problems for the coupled modified Navier-Stokes and Maxwell equations. J. Math. Fluid Mech. 6, 462–482 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Kang, K., Kim, J.-M.: Existence of solutions for the magnetohydrodynamics with power-law type nonlinear viscous fluid. Nonlinear Differential Equations Appl. 26(2), 24 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kang, K., Kim, H.-K., Kim, J.-M.: Existence and temporal decay of regular solutions to non-Newtonian fluids coupled with Maxwell equations, Nonlinear. Analysis 180, 284–307 (2019)

    MATH  Google Scholar 

  8. Kang, K., Kim, H.-K., Kim, J.-M.: Existence of regular solutions for a certain type of non-Newtonian Navier-Stokes equations. Z. Angew. Math. Phys. 70(4), 124 (2019)

    Article  MATH  Google Scholar 

  9. Ladyzhenskaya, O.A.: New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems. Trudy Mat. Inst. Steklov. 102, 85–104 (1967)

    MathSciNet  MATH  Google Scholar 

  10. Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow, 2nd edn. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  11. Málek, J., Nečas, J., Rokyta, M., R\(\mathring{\rm u}\)žička, M.: Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman & Hall, (1996)

  12. Samokhin, V.N.: On a system of equations in the magnetohydrodynamics of nonlinearly viscous media. Differ. Equ. 27, 628–636 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Whitaker, S.: Introduction to Fluid Mechanics, Krieger, (1986)

Download references

Acknowledgements

We would like to appreciate the anonymous referee for valuable comments. This work was supported by a grant from 2020 Research Fund of Andong National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Myoung Kim.

Ethics declarations

Conflict of interest

The author declares that they have no competing interests.

Additional information

Communicated by D. Chae.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

In this section, for the convenience of readers, we only give a proof for \(H^3\)-solution and the we refer [8] for the higher solution)

First of all, we estimate

$$\begin{aligned} \langle -\partial ^l\Big (\nabla \cdot \big ( T[|Du(t)|^2] Du(t) \big )\Big ),\partial ^l u\rangle _{L^2}. \end{aligned}$$

For this,

$$\begin{aligned}{} & {} \langle -\partial ^l\Big (\nabla \cdot \big ( T[|Du(t)|^2] Du(t) \big )\Big ),\partial ^l u\rangle _{L^2}=\langle -\Big (\nabla \cdot \big ( T[|Du(t)|^2] Du(t) \big )\Big ), u\rangle _{L^2}\\{} & {} +\langle -\nabla \Big (\nabla \cdot \big ( T[|Du(t)|^2] Du(t) \big )\Big ),\nabla u\rangle _{L^2}+\langle -\nabla ^2 \Big (\nabla \cdot \big ( T[|Du(t)|^2] Du(t) \big )\Big ),\nabla ^2 u\rangle _{L^2}\\{} & {} +\langle -\nabla ^s \Big (\nabla \cdot \big ( T[|Du(t)|^2] Du(t) \big )\Big ),\nabla ^s u\rangle _{L^2}:=I_0+I_1+I_2++I_3. \end{aligned}$$

1.1 A.1 A Priori Estimate

\(\bullet \) (\(I_1\)-estimate)  Noting that

$$\begin{aligned} \begin{aligned} \partial _{x_i}(T[|Du|^2] Du): \partial _{x_i} Du&=\big [ \partial _{x_i}T[|Du|^2] Du + T[|Du|^2]\partial _{x_i} Du \big ]: \partial _{x_i} Du\\&= 2 T^{'}[|Du|^2](D u: \partial _{x_i}Du)( Du: \partial _{x_i} Du) + T[|Du|^2]|\partial _{x_i} Du|^2\\&= 2 T^{'}[|Du|^2]| Du: \partial _{x_i} Du|^2 + T[|Du|^2]|\partial _{x_i} Du|^2, \end{aligned} \end{aligned}$$

we have

$$\begin{aligned} I_1=\int \limits _{{{\mathbb {R}} }^3}T[|Du|^2]|\partial _{x_i} Du|^2\,dx + \int \limits _{{{\mathbb {R}} }^3}2T^{'}[|Du|^2]| Du: \partial _{x_i} Du|^2\,dx:=good\ term. \end{aligned}$$

\(\bullet \) (\(I_2\)-estimate)  We observe that

$$\begin{aligned}{} & {} \int \limits _{{{\mathbb {R}} }^3}\partial _{x_{j}}\partial _{x_{i}}\Big [T[|Du|^2] D u\Big ]:\partial _{x_{j}}\partial _{x_{i}}D u\,dx\\{} & {} \quad =\underbrace{\int \limits _{{{\mathbb {R}} }^3}T[|Du|^2]|\partial _{x_{j}}\partial _{x_{i}}D u|^2}_{good \ term}, +\underbrace{\sum _{\sigma }\int \limits _{{{\mathbb {R}} }^3}\partial _{x_{\sigma (i)}}T[|Du|^2] (\partial _{x_{\sigma (j)}}D u: \partial _{x_{j}}\partial _{x_{i}}D u)\,dx}_{bad \ term}\\{} & {} \qquad +\int \limits _{{{\mathbb {R}} }^3}\partial _{x_{j}}\partial _{x_{i}}T[|Du|^2](D u: \partial _{x_{j}}\partial _{x_{i}}D u)\,dx=:I_{21}+I_{22}+I_{23}, \end{aligned}$$

where \(\sigma :\{ i,j\}\rightarrow \{i,j \}\) is a permutation of \(\{i,j \}\). We separately estimate terms \(I_{22}\) and \(I_{23}\). Using Hölder, Young’s and Gagliardo-Nirenberg inequalities, we have for \(I_{22}\)

$$\begin{aligned} |I_{22}|= & {} \left| \int \limits _{{{\mathbb {R}} }^3} 2T^{'}[|Du|^2](Du: \partial _{x_{\sigma (i)}}D u)(\partial _{x_{\sigma (j)}}D u: \partial _{x_{j}}\partial _{x_{i}}Du)\,dx \right| \\\lesssim & {} \Vert T[|Du|^2]\Vert _{L^\infty }\Vert \nabla Du\Vert ^2_{L^4}\Vert \nabla ^2 Du\Vert _{L^2}. \end{aligned}$$

Using the condition (1.3), it follows

$$\begin{aligned} |I_{22}|\lesssim \Vert T[|Du|^2]\Vert _{L^\infty }\Vert Du\Vert _{L^\infty }\Vert \nabla ^2 Du\Vert ^2_{L^2}. \end{aligned}$$

For \(I_{23}\), using Lemma 2.1, we compute

$$\begin{aligned} \begin{aligned} I_{23}&= \int \limits _{{{\mathbb {R}} }^3}2\big ( T^{'}[|Du|^2](Du: \partial _{x_{j}}\partial _{x_{i}}Du) + E_2 \big ) (D u: \partial _{x_{j}}\partial _{x_{i}}Du)\,dx\\&=\underbrace{\int \limits _{{{\mathbb {R}} }^3}E_2(D u: \partial _{x_{j}}\partial _{x_{i}}Du)\,dx}_{=I_{231}:\ bad \ term} + 2\underbrace{\int \limits _{{{\mathbb {R}} }^3}T^{'}[|Du|^2] |Du: \partial _{x_{j}}\partial _{x_{i}}Du|^2\,dx}_{good \ term}. \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} \left| I_{231} \right|&\le C\Vert T[|Du|^2]\Vert _{L^\infty } \Vert Du\Vert _{L^\infty }\Vert \nabla Du\Vert ^2_{L^4}\Vert \nabla ^2 Du\Vert _{L^2}\\&\le C\Vert T[|Du|^2]\Vert _{L^\infty } \Vert Du\Vert _{L^\infty }^2\Vert \nabla ^2 Du\Vert _{L^2}^2, \end{aligned} \end{aligned}$$

And thus, it yields

$$\begin{aligned} I_2=\underbrace{\int \limits _{{{\mathbb {R}} }^3}T[|Du|^2]|\partial _{x_{j}}\partial _{x_{i}}D u|^2 + \int \limits _{{{\mathbb {R}} }^3}2T^{'}[|Du|^2]|Du: \partial _{x_{j}}\partial _{x_{i}}Du|^2}_{good \ term}+\underbrace{I_{22}+I_{231}}_{bad \ term}, \end{aligned}$$

where

$$\begin{aligned} \underbrace{|I_{22}+I_{231}|}_{bad \ term}\le C\Vert T[|Du|^2]\Vert _{L^\infty }(\Vert Du\Vert _{L^\infty } + \Vert Du\Vert _{L^\infty }^2)\Vert \nabla ^2 Du\Vert ^2_{L^2}. \end{aligned}$$

\(\bullet \) (\(\Vert \nabla ^3 u \Vert _{L^2}\)-estimate) Direct computations show that

$$\begin{aligned} \int \limits _{{{\mathbb {R}} }^3}\partial ^3\Big [T[|Du|^2] D u\Big ]: \partial ^3Du\,dx=\underbrace{\int \limits _{{{\mathbb {R}} }^3}T[|Du|^2]|\partial ^3D u|^2\,dx}_{good \ term}\\ +\underbrace{\sum _{\sigma _3}\int \limits _{{{\mathbb {R}} }^3}\partial _{x_{\sigma _3(i)}}T[|Du|^2](\partial _{x_{\sigma _3(k)}}\partial _{x_{\sigma _3(j)}}Du:\partial ^3D u)\,dx}_{bad \ term}\\ +\underbrace{\sum _{\sigma _3}\int \limits _{{{\mathbb {R}} }^3}\partial _{x_{\sigma _3(j)}}\partial _{x_{\sigma _3(i)}}T[|Du|^2](\partial _{x_{\sigma _3(k)}}Du: \partial ^3Du)\,dx}_{bad \ term}\\ \quad +\int \limits _{{{\mathbb {R}} }^3}\partial ^3T[|Du|^2](D u:\partial ^3Du)\,dx=I_{31}+I_{32}+I_{33}+I_{34}, \end{aligned}$$

where \(\sigma _3=\pi _3\circ {\tilde{\sigma }}_3\) such that \({\tilde{\sigma }}_3:\{i,j,k\}\rightarrow \{i,j,k\}\) is a permutation of \(\{i,j,k \}\) and \(\pi _3\) is a mapping from \(\{i,j,k\}\) to \(\{1,2,3\}\).

We separately estimate terms \(I_{32}\), \(I_{33}\) and \(I_{34}\). We note first that

$$\begin{aligned} \begin{aligned} |I_{32}|&\le \int \limits _{{{\mathbb {R}} }^3}|2(T^{'}[|Du|^2]| |Du||\partial _{x_{\sigma _3(i)}}Du||\partial _{x_{\sigma _3(k)}}\partial _{x_{\sigma _3(j)}} D u| |\partial ^3 D u|\,dx\\&\le C\Vert T[|Du|^2]\Vert _{L^\infty }\Vert \nabla Du\Vert _{L^6}\Vert \nabla ^2 Du\Vert _{L^3}\Vert \nabla ^3 Du\Vert _{L^2}\\&\le C\Vert T[|Du|^2]\Vert _{L^\infty }\Vert \nabla ^2 Du\Vert _{L^2} \Vert Du\Vert _{L^\infty }^{\frac{1}{3}} \Vert \nabla ^3 Du\Vert ^{\frac{2}{3}}_{L^2}\Vert \nabla ^3Du\Vert _{L^2}, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} |I_{33}|{} & {} =\left| \int \limits _{{{\mathbb {R}} }^3}( 2T^{'}[|Du|^2]Du:\partial _{x_{\sigma _3(j)}} \partial _{x_{\sigma _3(i)}} D u + E_2 )(\partial _{x_{\sigma _3(k)}}D u: \partial ^3Du)\,dx \right| \\{} & {} \le \int \limits _{{{\mathbb {R}} }^3}2(T^{'}[|Du|^2]|Du||\nabla ^2 D u| + T[|Du|^2]|\nabla D u|^2 )|\nabla D u| |\nabla ^3 Du|\,dx\\{} & {} \le C \Vert T^{'}[|Du|^2]Du\Vert _{L^\infty } \Vert \nabla ^2 Du\Vert _{L^3}\Vert \nabla Du\Vert _{L^6}\Vert \nabla ^3 Du\Vert _{L^2} +\Vert T[|Du|^2]\Vert _{L^\infty }\Vert \nabla Du\Vert ^3_{L^6}\Vert \nabla ^3 Du\Vert _{L^2} \end{aligned}$$

Finally, for \(I_{34}\), using Lemma 2.1, we note that

$$\begin{aligned} \begin{aligned} I_{34}=&\int \limits _{{{\mathbb {R}} }^3}\big ( 2T^{'}[|Du|^2]Du:\partial ^3 D u) +E_3\big )(D u:\partial ^3D u)\,dx\\ =&\,2\underbrace{\int \limits _{{{\mathbb {R}} }^3} T^{'}[|Du|^2]|Du:\partial ^3 D u|^2\,dx}_{good \ term}+ \underbrace{\int \limits _{{{\mathbb {R}} }^3} E_3(D u:\partial ^3D u)\,dx}_{bad \ term}. \end{aligned} \end{aligned}$$
(A.1)

The second term in (A.1) is estimated as follows:

$$\begin{aligned}{} & {} \int \limits _{{{\mathbb {R}} }^3}E_3(D u:\partial ^3D u)\,dx \le \int \limits _{{{\mathbb {R}} }^3}|E_3||D u||\nabla ^3 D u|\,dx\\{} & {} \le C\int \limits _{{{\mathbb {R}} }^3} T[|Du|^2]\big (|\nabla Du|^3 +|\nabla ^2 Du||\nabla Du| \big )|D u||\nabla ^3 D u|\,dx\\{} & {} \le C\Vert T[|Du|^2]\Vert _{L^\infty }\Vert Du\Vert _{L^\infty } \big ( \Vert \nabla Du\Vert _{L^6}^3 + \Vert \nabla Du\Vert _{L^6}\Vert \nabla ^2 Du\Vert _{L^3} \big )\Vert \nabla ^3 D u\Vert _{L^2} \end{aligned}$$

Adding up the estimates above, we obtain

$$\begin{aligned} I_3=\underbrace{\int \limits _{{{\mathbb {R}} }^3}T[|Du|^2]|\partial ^3D u|^2\,dx +\int \limits _{{{\mathbb {R}} }^3}2T^{'}[|Du|^2]|Du: \partial ^3Du|^2\,dx}_{good \ term}+\underbrace{I_{32}+I_{33}+I_{342}}_{bad \ term} \end{aligned}$$
(A.2)

where

$$\begin{aligned} |I_{32}+I_{33}+I_{342}|\le C(\Vert T[|Du|^2]\Vert ^2_{L^\infty }+ \Vert T[|Du|^2]\Vert ^6_{L^\infty } )(\Vert Du\Vert ^2_{L^\infty }+\Vert Du\Vert ^4_{L^\infty })\Vert \nabla ^2 Du\Vert ^{6}_{L^2}. \end{aligned}$$

We combine the estimates abovec to conclude

$$\begin{aligned}{} & {} \underbrace{\int \limits _{{{\mathbb {R}} }^3}T[|Du|^2] (|\nabla ^3 Du|^2+|\nabla ^2 Du|^2 + |\nabla Du|^2 + | Du|^2)\,dx}_{good \ term}\\{} & {} + \underbrace{\int \limits _{{{\mathbb {R}} }^3}2T^{'}[|Du|^2]| Du: \partial _{x_i} Du|^2\,dx}_{good \ term}+ \underbrace{\int \limits _{{{\mathbb {R}} }^3}2T^{'}[|Du|^2]|Du: \partial _{x_{j}}\partial _{x_{i}}Du|^2}_{good \ term}+\underbrace{\int \limits _{{{\mathbb {R}} }^3}2T^{'}[|Du|^2]|Du: \partial ^3Du|^2}_{good \ term}\\{} & {} +\underbrace{I_{22}+I_{231}+I_{32}+I_{33}+I_{342}}_{bad \ term} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} |bad \ term|\lesssim&|T[|Du|^2]\Vert _{L^\infty }(\Vert Du\Vert _{L^\infty } + \Vert Du\Vert _{L^\infty }^2)\Vert \nabla ^2 Du\Vert ^2_{L^2}\\&+ (\Vert T[|Du|^2]\Vert ^2_{L^\infty }+ \Vert T[|Du|^2]\Vert ^6_{L^\infty } )(\Vert Du\Vert ^2_{L^\infty }+\Vert Du\Vert ^4_{L^\infty })\Vert \nabla ^2 Du\Vert ^{6}_{L^2}. \end{aligned} \end{aligned}$$

Hence, set \(X(t):= \Vert u(t)\Vert _{H^3({{\mathbb {R}} }^3)}\) and it then follows \( \frac{d}{dt} X^2\le g_3(X)X^a,\quad a>2. \) Therefore, it immediately implies that there exists \(T_3>0\) such that

$$\begin{aligned} \sup _{0\le t\le T_3}X(t) < \infty . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JM. Local Existence of Solutions to the Non-Resistive 3D MHD Equations with Power-law Type. J. Math. Fluid Mech. 25, 31 (2023). https://doi.org/10.1007/s00021-023-00772-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00772-0

Navigation