Skip to main content
Log in

On the Local Pressure Expansion for the Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We show that the pressure associated with a distributional solution of the Navier–Stokes equations on the whole space satisfies a local expansion defined as a distribution if and only if the solution is mild. This gives a new perspective on Lemarié-Rieusset’s “equivalence theorem.” Here, the Leray projection operator composed with a gradient is defined without using the Littlewood-Paley decomposition. Prior sufficient conditions for the local expansion assumed spatial decay or estimates on the gradient and imply the considered solution is mild. An important tool is an explicit description of the bounded mean oscillation solution to a Poisson equation, which we examine in detail. As applications we include an improvement of a uniqueness criteria by the authors in Morrey spaces and revisit a proof of a regularity criteria in dynamically restricted local Morrey spaces due to Grujić and Xu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is in fact sufficient to have \(u\rightarrow u_0\) in an \(L^1_\mathrm {loc}\) sense if we also have \(\limsup _{t\rightarrow 0^+} \Vert u(t)\Vert _{L^2(K)}<\infty \) for every compact K.

  2. This conclusion also appears in [28, Lemma 11.3]. We include the details for completeness.

  3. These assumptions are satisfied if \(u\in L^\infty ([0,T_0);L^\infty )\) is a strong, mild solution as in [15].

References

  1. Bradshaw, Z., Farhat, A., Grujić, Z.: An algebraic reduction of the ‘scaling gap’ in the Navier–Stokes regularity problem. Arch. Ration. Mech. Anal. 231(3), 1983–2005 (2019)

  2. Bradshaw, Z., Grujić, Z.: Frequency localized regularity criteria for the 3D Navier–Stokes equations. Arch. Ration. Mech. Anal. 224(1), 125–133 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bradshaw, Z., Tsai, T.-P.: Forward discretely self-similar solutions of the Navier–Stokes equations II. Ann. Henri Poincaré 18(3), 1095–1119 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bradshaw, Z., Tsai, T.-P.: Discretely self-similar solutions to the Navier–Stokes equations with data in \(L^2_{{\rm loc}}\) satisfying the local energy inequality. Anal. PDE 12(8), 1943–1962 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bradshaw, Z., Tsai, T.-P.: Global existence, regularity, and uniqueness of infinite energy solutions to the Navier–Stokes equations. Commun. Partial Differ. Equ. 45(9), 1168–1201 (2020)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. Escauriaza, L., Seregin, G.A., Šverák, V.: \(L^{3,\infty }\)-solutions of Navier–Stokes equations and backward uniqueness. (Russian) Uspekhi Mat. Nauk 58 (2003), no. 2 (350), 3–44; translation in Russian Math. Surveys 58 (2003), no. 2, 211–250

  8. Fefferman, C.: Characterizations of bounded mean oscillation. Bull. Am. Math. Soc. 77, 587–588 (1971)

    Article  MathSciNet  Google Scholar 

  9. Fernández-Dalgo, P.G., Lemarié-Rieusset, P.G.: Weak solutions for Navier–Stokes equations with initial data in weighted \(L^2\) spaces. Arch. Ration. Mech. Anal. 237(1), 347–382 (2020)

    Article  MathSciNet  Google Scholar 

  10. Fernández-Dalgo, P. G. and Lemarié-Rieusset, P. G.: Characterisation of the pressure term in the incompressible Navier–Stokes equations on the whole space, arXiv:2001.10436

  11. Fernández-Dalgo, P. G., Jarrín, O.: Discretely self-similar solutions for 3D MHD equations and global weak solutions in weighted \(L^2\) spaces. J. Math. Fluid Mech. 23, no. 1, Paper No. 22, 30 pp (2021)

  12. Gallay, T.: Infinite energy solutions of the two-dimensional Navier–Stokes equations. Ann. Fac. Sci. Toulouse Math. (6) 26(4), 979–1027 (2017)

    Article  MathSciNet  Google Scholar 

  13. Giga, Y., Inui, K., Matsui, S.: On the Cauchy problem for the Navier–Stokes equations with nondecaying initial data. Advances in fluid dynamics, 27–68, Quad. Mat., 4, Dept. Math., Seconda Univ. Napoli, Caserta (1999)

  14. Grujić, Z.: A geometric measure-type regularity criterion for solutions to the 3D Navier–Stokes equations. Nonlinearity 26(1), 289–296 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. Grujić, Z., Xu, L.: A Regularity Criterion for Solutions to the 3D NSE in ‘Dynamically Restricted’ Local Morrey Spaces. arXiv:1903.03833

  16. Grujić, Z., Xu, L.: Asymptotic criticality of the Navier–Stokes regularity problem. arXiv:1911.00974

  17. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MathSciNet  Google Scholar 

  18. Jia, H., Šverák, V.: Minimal \(L^3\)-initial data for potential Navier–Stokes singularities. SIAM J. Math. Anal. 45(3), 1448–1459 (2013)

    Article  MathSciNet  Google Scholar 

  19. Jia, H., Šverák, V.: Local-in-space estimates near initial time for weak solutions of the Navier–Stokes equations and forward self-similar solutions. Invent. Math. 196(1), 233–265 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kato, T.: Strong solutions of the Navier–Stokes equation in Morrey spaces. Bol. Soc. Brasil. Mat. (N.S.) 22(2), 127–155 (1992)

    Article  MathSciNet  Google Scholar 

  21. Kang, K., Miura, H., Tsai, T.-P.: Short time regularity of Navier–Stokes flows with locally \(L^3\) initial data and applications. Int. Math. Res. Not., rnz327 (2020)

  22. Kikuchi, N., Seregin, G.: Weak solutions to the Cauchy problem for the Navier–Stokes equations satisfying the local energy inequality. Nonlinear equations and spectral theory, 141–164, American Mathematical Society Translations Series 2, 220, American Mathematical Society, Providence, RI (2007)

  23. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001)

    Article  MathSciNet  Google Scholar 

  24. Kozono, H., Ogawa, T., Taniuchi, Y.: Navier–Stokes equations in the Besov space near \(L^\infty \) and BMO. Kyushu J. Math. 57(2), 303–324 (2003)

    Article  MathSciNet  Google Scholar 

  25. Kukavica, I.: On local uniqueness of weak solutions of the Navier–Stokes system with bounded initial data. J. Differ. Equ. 194(1), 39–50 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. Kukavica, I., Vicol, V.: On local uniqueness of weak solutions to the Navier–Stokes system with \(BMO^{-1}\) initial datum. J. Dyn. Differ. Equ. 20(3), 719–732 (2008)

    Article  MathSciNet  Google Scholar 

  27. Kwon, H., Tsai, T.-P.: Global Navier–Stokes flows for non-decaying initial data with slowly decaying oscillation. Commun. Math. Phys. 375, 1665–1715 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Lemarié-Rieusset, P.G.: Recent developments in the Navier–Stokes problem. Chapman Hall/CRC Research Notes in Mathematics, p. 431. Chapman Hall/CRC, Boca Raton, FL (2002)

  29. Lemarié-Rieusset, P.G.: The Navier–Stokes problem in the 21st century. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  30. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. (French). Acta Math. 63(1), 193–248 (1934)

  31. Lin, F.: A new proof of the Caffarelli–Kohn–Nirenberg theorem. Commun. Pure Appl. Math. 51(3), 241–257 (1998)

    Article  MathSciNet  Google Scholar 

  32. Maekawa, Y., Miura, H., Prange, C.: Local energy weak solutions for the Navier–Stokes equations in the half-space. Commun. Math. Phys. 367(2), 517–580 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  33. Maekawa, Y., Terasawa, Y.: The Navier–Stokes equations with initial data in uniformly local \(L^p\) spaces. Differ. Integral Equ. 19(4), 369–400 (2006)

    MATH  Google Scholar 

  34. Oseen, C.W.: Neuere Methoden und Ergebnisse in der Hydrodynamik. Akademische Verlags-gesellschaft, Leipzig (1927)

    MATH  Google Scholar 

  35. Shibata, Y., Shimizu, S.: A decay property of the Fourier transform and its application to the Stokes problem. J. Math. Fluid Mech. 3(3), 213–230 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  36. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30. Princeton University Press, Princeton (1970)

  37. Stein, E.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy. Princeton Mathematical Series 43. Princeton University Press, Princeton (1993)

  38. Tsai, T.-P.: On Leray’s self-similar solutions of the Navier–Stokes equations satisfying local energy estimates. Arch. Rational Mech. Anal. 143, 29–51 (1998)

  39. Xu, L.: Local-in-time solvability and space analyticity for the Navier–Stokes equations with BMO-type initial data. Arch. Ration. Mech. Anal. 236(1), 389–417 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Bradshaw was partially supported by the Simons Foundation. The research of Tsai was partially supported by NSERC grant RGPIN-2018-04137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary Bradshaw.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by G. P. Galdi

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradshaw, Z., Tsai, TP. On the Local Pressure Expansion for the Navier–Stokes Equations. J. Math. Fluid Mech. 24, 3 (2022). https://doi.org/10.1007/s00021-021-00637-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00637-4

Navigation