Skip to main content
Log in

Energy Conservation in 2-D Density-Dependent Euler Equations with Regularity Assumptions on the Vorticity

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of energy conservation for the two dimensional inhomogeneous Euler equations, with an emphasis on the vorticity \(\omega =\mathrm{curl}u\) of the flow. In particular, two types of sufficient conditions are obtained. The first one assumes \(L^p\)-regularity on the spatial gradient of the density \(\nabla \rho \) and the vorticity \(\omega \). The second one removes the regularity condition on \(\nabla \rho \) while requires certain time regularity of \(\omega \). Furthermore, we phrase the energy spectrum in terms of the Littlewood–Paley decomposition and show that the energy flux \(\Pi _q\) vanishes as the dyadic exponent \(q\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buckmaster, T., De Lellis, C., Isett, P., Székelyhidi Jr., L.: Anomalous dissipation for 1/5-Hölder Euler flows. Ann. Math. 182, 127–172 (2015)

    Article  MathSciNet  Google Scholar 

  2. Buckmaster, T., De Lellis, C., Székelyhidi Jr., L.: Dissipative Euler flows with Onsager-critical spatial regularity. Commun. Pure Appl. Math. 69, 1613–1670 (2016)

    Article  MathSciNet  Google Scholar 

  3. Buckmaster, T., De Lellis, C., Székelyhidi Jr., L., Vicol, V.: Onsager’s conjecture for admissible weak solutions. Commun. Pure Appl. Math. 72, 229–274 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cheskidov, A., Constantin, P., Friedlander, S., Shvydkoy, R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21, 1233–1252 (2008)

    Article  MathSciNet  Google Scholar 

  5. Constantin, P., Weinan, E., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165, 207–209 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cheskidov, A., Filho, M.C.Lopes, Nussenzveig, H.J., Shvydkoy, R.: Energy conservation in two-dimensional incompressible ideal fluids. Commun. Math. Phys. 348, 129–143 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chen, R.M., Yu, C.: Onsager’s energy conservation for inhomogeneous Euler equations. J. Math. Pure Appl. 131, 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  8. Danchin, R.: On the well-posedness of the incompressible density-dependent Euler equations in the \(L^p\) framework. J. Differ. Equ. 248, 2130–2170 (2010)

    Article  ADS  Google Scholar 

  9. Danchin, R., Fanelli, F.: The well-posedness issue for the density-dependent Euler equations in endpoint Besov spaces. J. Math. Pure Appl. 96, 253–278 (2011)

    Article  MathSciNet  Google Scholar 

  10. De Lellis, C., Székelyhidi Jr., L.: The Euler equations as a differential inclusion. Ann. Math. 170, 1417–1436 (2009)

    Article  MathSciNet  Google Scholar 

  11. Duchon, J., Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier–Stokes equations. Nonlinearity 13, 249–255 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. Da Veiga, H.B., Valli, A.: On the Euler equations for nonhomogeneous fluids (I). Rendiconti del Seminario matematico della Università di Padova 63, 151–168 (1980)

    MathSciNet  MATH  Google Scholar 

  13. Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Phys. D 78, 222–240 (1994)

    Article  MathSciNet  Google Scholar 

  14. Fanelli, F.: Conservation of geometric structures for non-homogeneous inviscid incompressible fluids. Commun. Partial Differ. Equ. 37, 1553–1595 (2012)

    Article  MathSciNet  Google Scholar 

  15. Feireisl, E.: Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 26. Oxford University Press, New York (2004)

    Google Scholar 

  16. Feireisl, E., Gwiazda, P., Swierczewska-Gwiazda, A., Wiedemann, E.: Regularity and energy conservation for the compressible Euler equations. Arch. Ration. Mech. Anal. 223, 1375–1395 (2017)

    Article  MathSciNet  Google Scholar 

  17. Grafakos, L.: Modern Fourier Analysis. Springer, Berlin (2009)

    Book  Google Scholar 

  18. Grafakos, L.: Classical Fourier Analysis, 3rd edn. Springer, Berlin (2014)

    MATH  Google Scholar 

  19. Isett, P.: Holder continuous Euler flows with compact support in time, ProQuest LLC, Ann Arbor, MI. Thesis Ph.D., Princeton University (2013)

  20. Isett, P.: A proof of Onsager’s conjecture. Ann. Math. 188, 871–963 (2018)

    Article  MathSciNet  Google Scholar 

  21. Isett, P.: On the endpoint regularity in Onsager’s conjecture, arXiv:1706.01549 (2017)

  22. Kellay, H., Goldburg, W.: Two-dimensional turbulence: a review of some recent experiments. Rep. Prog. Phys. 65, 845 (2002)

    Article  ADS  Google Scholar 

  23. Lions, P.L.: Mathematical Topics in Fluid Mechanics. Incompressible Models. Oxford Lecture Series in Mathematics and its Applications 3, vol. 1. Oxford University Press, New York (1996)

    Google Scholar 

  24. Leslie, T.M., Shvydkoy, R.: The energy balance relation for weak solutions of the density-dependent Navier–Stokes equations. J. Differ. Equ. 261, 3719–3733 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Lacroix-Violet, I., Vasseur, A.: Global weak solutions to the compressible quantum Navier–Stokes equation and its semi-classical limit. J. Math. Pures Appl. 114, 191–210 (2018)

    Article  MathSciNet  Google Scholar 

  26. Marsden, J.E.: Well-posedness of the equations of a non-homogeneous perfect fluid. Commun. Partial Differ. Equ. 1, 215–230 (1976)

    Article  MathSciNet  Google Scholar 

  27. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  28. Nguyen, Q.H., Nguyen, P.T. Bao, B.Q.: Energy conservation for inhomogeneous incompressible and compressible Euler equations, arXiv:1808.10297 (2018)

  29. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (Supplemento) 6, 279–287 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  30. Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3, 343–401 (1993)

    Article  MathSciNet  Google Scholar 

  31. Shnirelman, A.: Weak solutions with decreasing energy of incompressible Euler equations. Commun. Math. Phys. 210, 541–l603 (2000)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Chen.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Communicated by E. Feireisl

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by National Natural Science Foundation of China-NSAF (No. 11301439) and Natural Science Foundation of Fujian Province, China (No. 2018J01430).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q. Energy Conservation in 2-D Density-Dependent Euler Equations with Regularity Assumptions on the Vorticity. J. Math. Fluid Mech. 22, 6 (2020). https://doi.org/10.1007/s00021-019-0470-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0470-1

Keywords

Mathematics Subject Classification

Navigation