Skip to main content
Log in

Forward Discretely Self-similar Solutions of the MHD Equations and the Viscoelastic Navier–Stokes Equations with Damping

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence of forward discretely self-similar solutions to the MHD equations and the viscoelastic Navier–Stokes equations with damping with large weak \(L^3\) initial data. The same proving techniques are also applied to construct self-similar solutions to the MHD equations and the viscoelastic Navier–Stokes equations with damping with large weak \(L^3\) initial data. This approach is based on Bradshaw and Tsai (Ann Henri Poincaré 18(3):1095–1119, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradshaw, Z., Tsai, T.-P.: Forward discretely self-similar solutions of the Navier–Stokes equations II. Ann. Henri Poincaré 18(3), 1095–1119 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. Chen, Y., Zhang, P.: The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions. Commun. Part. Differ. Equ. 31(10–12), 1793–1810 (2006)

    Article  MathSciNet  Google Scholar 

  4. Duvaut, G., Lions, J.-L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46, 241–279 (1972)

    Article  Google Scholar 

  5. He, C., Xin, Z.: On the self-similar solutions of the magneto-hydro-dynamic equations. Acta Math. Sci. Ser. B (Engl. Ed.) 29(3), 583–598 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Hynd, R.: Partial regularity of weak solutions of the viscoelastic Navier–Stokes equations with damping. SIAM J. Math. Anal. 45(2), 495–517 (2013)

    Article  MathSciNet  Google Scholar 

  7. Kato, T.: Strong solutions of the Navier–Stokes equation in Morrey spaces. Bol. Soc. Bras. Mat. (N.S.) 22(2), 127–155 (1992)

    Article  MathSciNet  Google Scholar 

  8. Kim, J.-M.: On regularity criteria of weak solutions to the 3D viscoelastic Navier–Stokes equations with damping. Appl. Math. Lett. 69, 153–160 (2017)

    Article  MathSciNet  Google Scholar 

  9. Lai, B., Lin, J., Wang, C.: Forward self-similar solutions to the viscoelastic Navier–Stokes equation with damping. SIAM J. Math. Anal. 49(1), 501–529 (2017)

    Article  MathSciNet  Google Scholar 

  10. Lei, Z., Liu, C., Zhou, Y.: Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech. Anal. 188(3), 371–398 (2008)

    Article  MathSciNet  Google Scholar 

  11. Lemarié-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC, Boca Raton (2002)

    Book  Google Scholar 

  12. Lin, F.-H., Liu, C., Zhang, P.: On hydrodynamics of viscoelastic fluids. Commun. Pure Appl. Math. 58(11), 1437–1471 (2005)

    Article  MathSciNet  Google Scholar 

  13. Lin, Y., Zhang, H., Zhou, Y.: Global smooth solutions of MHD equations with large data. J. Differ. Equ. 261(1), 102–112 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Miao, C., Yuan, B., Zhang, B.: Well-posedness for the incompressible magneto-hydrodynamic system. Math. Methods Appl. Sci. 30(8), 961–976 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Temam, R.: Navier–Stokes Equations Theory and Numerical Analysis. Studies in Mathematics and Its Applications, vol. 2. North-Holland Publishing Co., Amsterdam (1977)

    MATH  Google Scholar 

  16. Tsai, T.-P.: On Leray’s self-similar solutions of the Navier–Stokes equations satisfying local energy estimates. Arch. Ration. Mech. Anal. 143(1), 29–51 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was partially supported by FYF (#6456) of Graduate and Postdoctoral Studies, University of British Columbia (BC). The author would like to express his fully gratitude to Tai-Peng Tsai for kindly discussion. Also, he thanks Anyi Bao for her proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Chih Lai.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by R. Shvydkoy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, we prove the three inclusions \(L^3_w\subset M^{2,1}\subset L^2_{-3/2}\subset L^2_{loc }\). To begin with, the first inclusion can be shown by the inequality

$$\begin{aligned} r^{-1}\int _{B_r(x_0)}|f(x)|^2dx&=~r^{-1}\int _{B_r(x_0)}\int _0^{|f(x)|}2\alpha \,d\alpha dx =r^{-1}\int _{B_r(x_0)}\int _0^\infty 2\alpha 1_{|f|>\alpha }(x)\,d\alpha dx\\&=~r^{-1}\int _0^\infty 2\alpha |\{|f|>\alpha \}\cap B_r(x_0)|d\alpha \\&=~r^{-1}\int _0^{r^{-1}}2\alpha |\{|f|>\alpha \}\cap B_r(x_0)|d\alpha \\&\quad +r^{-1}\int _{r^{-1}}^\infty 2\alpha |\{|f|>\alpha \}\cap B_r(x_0)|d\alpha \\&\le ~r^{-1}\int _0^{r^{-1}}2\alpha |B_r(x_0)|d\alpha +r^{-1}\int _{r^{-1}}^\infty 2\alpha |\{|f|>\alpha \}|d\alpha \\&\le ~r^{-1}|B_r(x_0)|r^{-2}+r^{-1}\int _{r^{-1}}^\infty 2\alpha \Vert f\Vert _{L^3_w}^3\alpha ^{-3}d\alpha \\&\lesssim ~1+\Vert f\Vert _{L^3_w}^3. \end{aligned}$$

Next, the second inclusion is valid as

$$\begin{aligned} \int _{\mathbb {R}^3}\frac{|f(x)|^2}{(1+|x|)^3}\,dx= & {} \int _{|x|<1}\frac{|f(x)|^2}{(1+|x|)^3}\,dx+\sum _{k=0}^\infty \int _{2^k\le |x|<2^{k+1}}\frac{|f(x)|^2}{(1+|x|)^3}\,dx\\\le & {} \int _{B_1(0)}|f(x)|^2dx+\sum _{k=0}^\infty \frac{1}{(1+2^k)^3}\int _{2^k\le |x|<2^{k+1}}|f(x)|^2dx\\\le & {} \Vert f\Vert _{M^{2,1}}^2+\sum _{k=0}^\infty \frac{1}{(1+2^k)^3}\,2^{k+1}\Vert f\Vert _{M^{2,1}}^2\\\lesssim & {} \Vert f\Vert _{M^{2,1}}^2. \end{aligned}$$

Finally, the third inclusion holds since

$$\begin{aligned} \int _{|x|\le M}|f(x)|^2dx\le (1+M)^3\int _{\mathbb {R}^3}\frac{|f(x)|^2}{(1+|x|)^3}\,dx=(1+M)^3\Vert f\Vert _{L^2_{-3/2}}^2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, CC. Forward Discretely Self-similar Solutions of the MHD Equations and the Viscoelastic Navier–Stokes Equations with Damping. J. Math. Fluid Mech. 21, 38 (2019). https://doi.org/10.1007/s00021-019-0443-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0443-4

Keywords

Mathematics Subject Classification

Navigation