Skip to main content
Log in

Instability of Nonlinear Wave–Current Interactions in a Modified Equatorial \(\beta \)-Plane Approximation

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We present an instability analysis of some exact and explicit solutions to the geophysical equatorial \(\beta \)-plane equations incorporating a gravitational-correction term. A criterion for the instability is given by means of the short-wavelength perturbation method. Thresholds for both, a solution with a zonal current under constant density and a solution admitting stratification, are derived and expressed in terms of the steepness of the waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayly, B.J.: Three-dimensional instabilities in quasi-two dimensional inviscid flows. In: American Society of Mechanical Engineers, Applied Mechanics Division, AMD, pp. 71–77. ASME (1987)

  2. Boyd, J.P.: Nonlinear wavepackets and nonlinear schroedinger equation. In: Dynamics of the Equatorial Ocean, pp. 405–464. Springer, Berlin (2018)

    Google Scholar 

  3. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166(3), 523–535 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. Constantin, A.: Nonlinear water waves with applications to wave–current interactions and tsunamis. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia, PA (2011)

  5. Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, C05029 (2012)

    Article  ADS  Google Scholar 

  6. Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43(1), 165–175 (2013)

    Article  ADS  Google Scholar 

  7. Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44(2), 781–789 (2014)

    Article  ADS  Google Scholar 

  8. Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118(6), 2802–2810 (2013)

    Article  ADS  Google Scholar 

  9. Constantin, A., Ivanov, R.I., Martin, C.-I.: Hamiltonian formulation for wave–current interactions in stratified rotational flows. Arch. Ration. Mech. Anal. 221(3), 1417–1447 (2016)

    Article  MathSciNet  Google Scholar 

  10. Constantin, A., Ivanov, R.: A hamiltonian approach to wave–current interactions in two-layer fluids. Phys. Fluids 27(8), 086603 (2015)

    Article  ADS  Google Scholar 

  11. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109(4), 311–358 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Constantin, A., Johnson, R.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46(6), 1935–1945 (2016)

    Article  ADS  Google Scholar 

  13. Constantin, A., Johnson, R.: Large gyres as a shallow-water asymptotic solution of euler’s equation in spherical coordinates. Proc. R. Soc. A 473(2200), 20170063 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Constantin, A., Johnson, R.: A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the pacific equatorial undercurrent and thermocline. Phys. Fluids 29(5), 056604 (2017)

    Article  ADS  Google Scholar 

  15. Constantin, A., Johnson, R.: Steady large-scale ocean flows in spherical coordinates. Oceanography 31(3), 42–50 (2018)

    Article  Google Scholar 

  16. Constantin, A., Monismith, S.: Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511–528 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Cushman-Roisin, B., Beckers, J.M.: Chapter 21—Equatorial Dynamics, International Geophysics, vol. 101. Academic Press, Cambridge (2011)

    MATH  Google Scholar 

  18. Dellar, P.J.: Variations on a beta-plane: derivation of non-traditional beta-plane equations from hamilton’s principle on a sphere. J. Fluid Mech. 674, 174–195 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  19. Drazin, P.G., Reid, W.H.: Hydrodynamic stability. Technical report. Cambridge university press (1981)

  20. Friedlander, S., Vishik, M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66(17), 2204 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  21. Genoud, F., Henry, D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16(4), 661–667 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gerstner, F.: Theorie der wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)

    Article  Google Scholar 

  23. Henry, D.: On three-dimensional gerstner-like equatorial water waves. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2111), 20170088 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Henry, D.: On the deep-water Stokes wave flow. Int. Math. Res. Not. IMRN (2008). Art. ID rnn 071, 7

  25. Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B Fluids 38, 18–21 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Henry, D.: A modified equatorial \(\beta \)-plane approximation modelling nonlinear wave–current interactions. J. Differ. Equ. 263(5), 2554–2566 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Henry, D., Hsu, H.-C.: Instability of internal equatorial water waves. J. Differ. Equ. 258(4), 1015–1024 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Henry, D., Martin, C.-I.: Exact, purely azimuthal stratified equatorial flows in cylindrical coordinates. Dyn. Partial Differ. Equ. 15(4), 337–349 (2018)

    Article  MathSciNet  Google Scholar 

  29. Henry, D., Martin, C.-I.: Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification. J. Differ. Equ. (2018). https://doi.org/10.1016/j.jde.2018.11.017

    Article  ADS  MathSciNet  Google Scholar 

  30. Hsu, H.-C.: Some nonlinear internal equatorial flows. Nonlinear Anal. Real World Appl. 18, 69–74 (2014)

    Article  MathSciNet  Google Scholar 

  31. Ionescu-Kruse, D.: Short-wavelength instabilities of edge waves in stratified water. Discrete Contin. Dyn. Syst. A 35, 2053–2066 (2015)

    Article  MathSciNet  Google Scholar 

  32. Ionescu-Kruse, D.: Instability of equatorially trapped waves in stratified water. Annali di Matematica Pura ed Applicata (1923-) 195(2), 585–599 (2016)

    Article  MathSciNet  Google Scholar 

  33. Ionescu-Kruse, D.: Instability of Pollard’s exact solution for geophysical ocean flows. Phys. Fluids 28(8), 086601 (2016)

    Article  ADS  Google Scholar 

  34. Ionescu-Kruse, D.: On the short-wavelength stabilities of some geophysical flows. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2111), 20170090 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ionescu-Kruse, D., Martin, C.-I.: Local stability for an exact steady purely azimuthal equatorial flow. J. Math. Fluid Mech. 20(1), 27–34 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. Kluczek, M.: Equatorial water waves with underlying currents in the f-plane approximation. Appl. Anal. 97(11), 1867–1880 (2018)

    Article  MathSciNet  Google Scholar 

  37. Leblanc, S.: Local stability of gerstner’s waves. J. Fluid Mech. 506, 245–254 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  38. Lifschitz, A., Hameiri, E.: Local stability conditions in fluid dynamics. Phys. Fluids A Fluid Dyn. 3(11), 2644–2651 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  39. Martin, C.I.: On the vorticity of mesoscale ocean currents. Oceanography 31(3), 28–35 (2018)

    Article  Google Scholar 

  40. Matioc, A.-V.: Exact geophysical waves in stratified fluids. Appl. Anal. 92(11), 2254–2261 (2013)

    Article  MathSciNet  Google Scholar 

  41. Rodriguez-Sanjurjo, A.: Global diffeomorphism of the lagrangian flow-map for equatorially-trapped internal water waves. Nonlinear Anal. Theory Methods Appl. 149, 156–164 (2017)

    Article  MathSciNet  Google Scholar 

  42. Sastre-Gomez, S.: Global diffeomorphism of the lagrangian flow-map defining equatorially trapped water waves. Nonlinear Anal. 125, 725–731 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the Science Foundation Ireland (SFI) research Grant 13/CDA/2117

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián Rodríguez-Sanjurjo.

Ethics declarations

Conflict of interest

The author declares that he receives the support of the research Grant 13/CDA/2117 Science Foundation Ireland (SFI).

Additional information

Communicated by A. Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Sanjurjo, A. Instability of Nonlinear Wave–Current Interactions in a Modified Equatorial \(\beta \)-Plane Approximation. J. Math. Fluid Mech. 21, 24 (2019). https://doi.org/10.1007/s00021-019-0427-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0427-4

Keywords

Mathematics Subject Classification

Navigation