Skip to main content
Log in

Global Existence of Classical Solutions with Large Oscillations and Vacuum to the Three-Dimensional Compressible Nematic Liquid Crystal Flows

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

This paper is concerned with a simplified hydrodynamic flow modeling the three-dimensional motion of compressible, nematic liquid crystal materials. The authors establish the global existence of classical solution to the Cauchy problem with smooth initial data which are of small energy but possibly large oscillations with constant state as far-field condition which could be either vacuum or non-vacuum. The initial density is allowed to vanish and the spatial measure of the set of vacuum can be arbitrarily large, in particular, the initial density can even have compact support. As a byproduct, the large-time behavior of the solution is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bergh, J., Lofstrom, J.: Interpolation Spaces, An Introduction. Springer, Berlin (1976)

    Book  Google Scholar 

  3. Choe, H., Kim, H.: Strong solutions of the Navier–Stokes equations for isentropic compressible fluids. J. Differ. Equ. 190, 504–523 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cho, Y., Choe, H.J., Kim, H.: Unique solvability of the initial boundary value problems for compressible viscous fluid. J. Math. Pures Appl. 83, 243–275 (2004)

    Article  MathSciNet  Google Scholar 

  5. Cho, Y., Kim, H.: On classical solutions of the compressible Navier–Stokes equations with nonnegative initial densities. Manuscr. Math. 120, 91–129 (2006)

    Article  MathSciNet  Google Scholar 

  6. Ding, S.J., Lin, J.Y., Wang, C.Y., Wen, H.Y.: Compressible hydrodynamic flow of liquid crystals in 1D. Duscrete Contin. Dyn. Syst. 32(2), 539–563 (2012)

    Article  Google Scholar 

  7. Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–34 (1961)

    Article  MathSciNet  Google Scholar 

  8. Ericksen, J.L.: Hydrostatic theory of liquid crystal. Arch. Ration. Mech. Anal. 9, 371–378 (1962)

    Article  MathSciNet  Google Scholar 

  9. Ericksen, J.L.: Continuum theory of nematic liquid crystals. Res. Mech. 21, 381–392 (1987)

    Google Scholar 

  10. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  11. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem I. Arch. Ration. Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  Google Scholar 

  12. Hardt, R., Kinderlehrer, D., Lin, F.: Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105, 547–570 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hoff, D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120, 215–254 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hoff, D.: Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions. Comm. Pure Appl. Math. 55, 1365–1407 (2002)

    Article  MathSciNet  Google Scholar 

  15. Huang, X., Li, J.: Global classical and weak solutions to the three-dimensional full compressible Navier–Stokes system with vacuum and large oscillations. Arch. Ration. Mech. Anal. (2017). https://doi.org/10.1007/s00205-017-1188-y

    Article  ADS  MathSciNet  Google Scholar 

  16. Huang, X., Li, J., Xin, Z.P.: Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equaitons. Commun. Pure Appl. Math. 65, 549–585 (2012)

    Article  Google Scholar 

  17. Huang, X., Li, J., Xin, Z.P.: Blowup criterion for viscous baratropic flows with vacuum states. Commun. Math. Phys. 301, 23–35 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  18. Huang, X., Li, J., Xin, Z.P.: Serrin-type criterion for the three-dimensional viscous compressible flows. SIAM J. Math. Anal. 43, 1872–1886 (2011)

    Article  MathSciNet  Google Scholar 

  19. Huang, X., Wang, Y.: A Serrin criterion for compressible nematic liquid crystal flows. Math. Methods Appl. Sci. 36, 1363–1375 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. Huang, T., Wang, C., Wen, H.: Strong solutions of the compressible nematic liquid crystal flow. J. Differ. Equ. 252, 2222–2256 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  21. Huang, T., Wang, C.Y.: Blow up criterion for nematic liquid crystal flows. Commun. Partial Differ. Equ. 37, 875–884 (2012)

    Article  MathSciNet  Google Scholar 

  22. Huang, T., Wang, C.Y., Wen, H.Y.: Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch. Ration. Mech. Anal. 204, 285–311 (2012)

    Article  MathSciNet  Google Scholar 

  23. Kato, T.: Strong \(L^p\)-solutions of the Navier–Stokes equaiton in \(R^m\), with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  Google Scholar 

  24. Ladyzenskaja, O.A., Solonnikov, V.A., Uralceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  25. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Course of Theoretical Physics, vol. 6, 2nd edn. Butterworth-Heinemann, Oxford (1987)

    Google Scholar 

  26. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  Google Scholar 

  27. Li, J., Zhang, J.W., Zhao, J.N.: On the global motion of viscous barotropic flows subject to large external potential forces and vacuum. SIAM J. Math. Anal. 47, 1121–1153 (2015)

    Article  MathSciNet  Google Scholar 

  28. Lin, F.H.: Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena. Commun. Pure Appl. Math. 42, 789–814 (1989)

    Article  MathSciNet  Google Scholar 

  29. Lin, F.H., Liu, C.: Nonparabolic Dissipative Systems Modeling the Flow of Liquid Crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)

    Article  MathSciNet  Google Scholar 

  30. Lin, F.H., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid cyrstals. Discrete Contin. Dyn. Syst. 2, 1–22 (1996)

    Google Scholar 

  31. Lions, P.L.: Mathematical Topics in Fluid Mechanics. Incompressible models, vol. 1. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  32. Lions, P.L.: Mathematical Topics in Fluid Mechanics. Compressible Models, vol. 2. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  33. Liu, X.G., Liu, L.M.: A blow-up criterion for the compressible liquid crystals system. Chin. Ann. Math. Ser. A 32, 393–406 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  Google Scholar 

  35. Morro, A.: Modelling of nematic liquid crystals in electromagnetic fields. Adv. Theor. Appl. Mech. 2, 43–58 (2009)

    MATH  Google Scholar 

  36. Wang, C.Y.: Heat flow of harmonic maps whose gradients belong to \(L_x^nL^\infty _t\). Arch. Ration. Mech. Anal. 188, 309–349 (2008)

    Article  MathSciNet  Google Scholar 

  37. Wang, C.Y.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200, 1–19 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  38. Zakharov, A.V., Vakulenko, A.A.: Orientational dynamics of the compressible nematic liquid crystals induced by a temperature gradient. Phys. Rev. E 79, 011708 (2009)

    Article  ADS  Google Scholar 

  39. Zlotnik, A.A.: Uniform estimates and stabilization of symmetric solutions of a system of quasilinear equations. Differ. Equ. 36, 701–716 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the referees for the useful suggestions which improve the presentation of this paper. This work is partially supported by NNSFC (Grant Nos. 11671333, 11271306), the Natural Science Foundation of Fujian Province of China (Grant No. 2015J01023), and the Fundamental Research Funds for the Central Universities (Grant No. 20720160012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G.-Q. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xu, Z. & Zhang, J. Global Existence of Classical Solutions with Large Oscillations and Vacuum to the Three-Dimensional Compressible Nematic Liquid Crystal Flows. J. Math. Fluid Mech. 20, 2105–2145 (2018). https://doi.org/10.1007/s00021-018-0400-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-018-0400-7

Keywords

Mathematics Subject Classification

Navigation