Amrouche, C., Seloula, N.: Lp-theory for vector potentials and Sobolev’s inequalities for vector fields: application to the Stokes equations with pressure boundary conditions. Math. Models Methods Appl. Sci. 23(1), 37–92 (2013)
Auchmuty G., Alexander J.C.: L2-well-posedness of 3D div-curl boundary value problems. Q. Appl. Math. 63(3), 479–508 (2005)
MathSciNet
Google Scholar
Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Academic Press, Inc., Boston (1988)
Besov, O.V., I’lin, V.P., Nikolskij, S.M.: Integral Function Representation and Imbedding Theorem, Moscow (1975)
Bahouri H., Chemin J.Y., Danchin R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Heidelberg (2011)
Book
MATH
Google Scholar
Bolik, J., von Wahl, W.: Estimating ∇ u in terms of div u, curl u, either (v, u) or v × u and the topology. Math. Methods Appl. Sci. 20, 737–744 (1997)
Danchin R., Mucha P.B.: A critical functional framework for the inhomogeneous Navier–Stokes equations. J. Funct. Anal. 256(3), 881–927 (2009)
MathSciNet
Article
MATH
Google Scholar
Danchin R., Mucha P.B.: The divergence equation in rough spaces. J. Math. Anal. Appl. 386(1), 9–31 (2012)
MathSciNet
Article
Google Scholar
Delcourte S., Domelevo K., Omnes P.: A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes. SIAM J. Numer. Anal. 45(3), 1142–1174 (2007)
MathSciNet
Article
MATH
Google Scholar
Escher J., Giga Y., Ito K.: On a limiting motion and self-intersections for the intermediate surface diffusion flow. J. Evol. Equ. 2(3), 349–364 (2002)
MathSciNet
Article
Google Scholar
Escher J., Mucha P.B.: The surface diffusion flow on rough phase spaces. Discrete Contin. Dyn. Syst. 26(2), 431–453 (2010)
MathSciNet
Article
MATH
Google Scholar
Escher J., Simonett G.: A center manifold analysis for the Mullins–Sekerka model. J. Differ. Equ. 143, 267–292 (1998)
MathSciNet
Article
MATH
ADS
Google Scholar
Friedrichs K.O.: Differential forms on Riemannian manifolds. Commun. Pure Appl. Math. 8, 551–590 (1955)
MathSciNet
Article
MATH
Google Scholar
Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edn. Springer Monographs in Mathematics. Springer, New York (2011)
Griffiths D.J.: Introduction to Electrodynamics. Prentice Hall, Upper Saddle River (1999)
Google Scholar
Jackson J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)
Google Scholar
Kay J.M.: An Introduction to Fluid Mechanics and Heat Transfer: With Applications in Chemical and Mechanical Process Engineering. Cambridge University Press, Cambridge (1963)
MATH
Google Scholar
Landau L.D., Lifshitz E.M.: Fluid Mechanics. Butterworth-Heinemann, UK (1987)
MATH
Google Scholar
Marcinkiewicz J.: Sur les multiplicateurs des series de Fourier. Studia Math. 8, 78–91 (1939)
Google Scholar
Milnor, J.W., Stasheff, J.D.: Characteristic classes. Annals of Mathematics Studies, vol. 76. Princeton University Press, Princeton (1974)
Mucha P.B.: On weak solutions to the Stefan problem with Gibbs–Thomson correction. Differ. Integr. Equ. 20, 769–792 (2007)
MathSciNet
MATH
Google Scholar
Mucha P.B.: On the Stefan problem with surface tension in the Lp framework. Adv. Differ. Equ. 10, 861–900 (2005)
MathSciNet
MATH
Google Scholar
Mucha P.B., Zajaczkowski W.: On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion. Appl. Math. (Warsaw) 27, 319–333 (2000)
MathSciNet
MATH
Google Scholar
Nicolaides, R.A., Wu, X.: Covolume, solutions of three-dimensional div-curl equations. SIAM J. Numer. Anal. 34(6), 2195–2203 (1997)
Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. de Gruyter Ser. Nonlinear Anal., Berlin (1996)
Solonnikov V.A.: Overdetermined elliptic boundary value problems. Zap. Nauch. Sem. LOMI 21, 112–158 (1971)
MathSciNet
MATH
Google Scholar
Solonnikov V.A.: On the nonstationary motion of an isolated volume of a viscous incompressible fluid. Izv. Akad. Nauk SSSR 51, 1065–1087 (1987)
Google Scholar
Tomoro A.: On smoothing effect for higher order curvature flow equations. Adv. Math. Sci. Appl. 20(2), 483–509 (2010)
MathSciNet
MATH
Google Scholar
Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Math. Library, vol. 18. North-Holland Publishing Co., Amsterdam (1978)
von Wahl, W.: Estimating ∇ u by div u and curl u. Math. Methods Appl. Sci. 15, 123–143 (1992)
Zajaczkowski, W.: Existence and regularity of some elliptic systems in domains with edges. Dissertationes Math. (Rozprawy Mat.) 274 (1989)
Zajaczkowski, W.: Global Special Regular Solutions to the Navier-Stokes Equations in a Cylindrical Domain Under Boundary Slip Conditions. Gakuto International Series, Mathematical Sciences and Applications, vol. 21. Gakkotosho, Tokyo (2004)