Skip to main content
Log in

Topography Influence on the Lake Equations in Bounded Domains

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We investigate the influence of the topography on the lake equations which describe the two-dimensional horizontal velocity of a three-dimensional incompressible flow. We show that the lake equations are structurally stable under Hausdorff approximations of the fluid domain and L p perturbations of the depth. As a byproduct, we obtain the existence of a weak solution to the lake equations in the case of singular domains and rough bottoms. Our result thus extends earlier works by Bresch and Métivier treating the lake equations with a fixed topography and by Gérard-Varet and Lacave treating the Euler equations in singular domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bresch D., Métivier G.: Global existence and uniqueness for the Lake equations with vanishing topography : elliptic estimates for degenerate equations. Nonlinearity 19(3), 591–610 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Camassa R., Holm D.D., Levermore C.D.: Long-time effects of bottom topography in shallow water (Los Alamos, NM, 1995). Nonlinear phenomena in ocean dynamics Physica D 98(2–4), 258–286 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Galdi G.P.: An introduction to the mathematical theory of the Navier-Stokes equations Steady-state problems. Springer Monographs in Mathematics, 2nd edn. Springer, New York (2011)

    Google Scholar 

  4. Gérard-Varet D., Lacave C.: The two dimensional Euler equation on singular domains. Arch. Ration. Mech. Anal. 209(1), 131–170 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Greenspan H.P.: The theory of rotating fluids. Cambridge University Press, London (1968)

    MATH  Google Scholar 

  6. Henrot A., Pierre M.: Variation et optimisation de formes. Une analyse géométrique (French) [Shape variation and optimization. A geometric analysis], Mathématiques Applications 48. Springer, Berlin (2005)

    Google Scholar 

  7. Iftimie D., Lopes Filho M.C., Nussenzveig Lopes H.J., Sueur F., Weak vorticity formulation for the incompressible 2D Euler equations in domains with boundary, arXiv:1305.0905 (preprint 2013)

  8. Lacave C., Uniqueness for Two Dimensional Incompressible Ideal Flow on Singular Domains, arXiv:1109.1153 (preprint 2011)

  9. Levermore C.D., Oliver M., Titi E.S.: Global well-posedness for models of shallow water in a basin with a varying bottom, Indiana Univ. Math. J. 45(2), 479–510 (1996)

    MATH  MathSciNet  Google Scholar 

  10. Levermore C.D., Oliver M., Titi E.S.: Global well-posedness for the lake equation. Physica D 98(2–4), 492–509 (1996)

    Google Scholar 

  11. Sverák V.: On optimal shape design. J. Math. Pures Appl.(9) 72(6), 537–551 (1993)

    MATH  MathSciNet  Google Scholar 

  12. Wolibner W.: Un théorème sur l’existence du mouvement plan d’un fluide parfait homogène, incompressible, pendant un temps infiniment long. Math. Z. 37(1), 698–726 (1933)

    Article  MathSciNet  Google Scholar 

  13. Yudovich V.I.: Non-stationary flows of an ideal incompressible fluid. Z̆. Vyc̆isl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Lacave.

Additional information

Communicated by E. Feireisl

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacave, C., Nguyen, T.T. & Pausader, B. Topography Influence on the Lake Equations in Bounded Domains. J. Math. Fluid Mech. 16, 375–406 (2014). https://doi.org/10.1007/s00021-013-0158-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-013-0158-x

Mathematics Subject Classification (2010)

Keywords

Navigation